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ABSTRACT

This report deals with the development of a general mathematical model and solution

methodologies for analyzing structural response of thin, metallic shell-like structures under

dynamic and/or static thermomechanical loads. In the mathematical model, geometric as well as

material-type of nonlinearities are considered. Traditional as well as novel approaches are reported

and detailed applications are presented in the appendices. The emphasis for the mathematical

model, the related solution schemes, and the applications, is on thermal viscoelastic and

viscopla'stic phenomena, which can predict creep and ratchetting.

1. INTRQDIJCTIQN

The prediction of inelastic behavior of metallic materials at elevated temperatures has

increased in importance in recent years. The operating conditions within the hot section of a rocket

motor or a modem gas turbine engine present an extremely harsh thermo-mechanical environment.

Large thermal transients are induced each time the engine is started or shut down. Additional

thermal transients from an elevated ambient occur, whenever the engine power level is adjusted to
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meet flight requirements. The structural elements employed to construct such hot sections, as well

as any engine component located therein, must be capable of withstanding such extreme

conditions. Failure of a component would, due to the critical nature of the hot section, lead to an

immediate and catastrophic loss in power and thus cannot be tolerated. Consequently, assuring

satisfactory long term performance for such components is a major concern for the designer.

Traditionally, this requirement for long term durability has been a more significant concern

for gas turbine engines rather than rocket motors. However, with the advent of reusable space

vehicles, such as the Space Shuttle, the requirement to accurately predict future performance

following repeated elevated temperature operations must now be extended to include the more

extreme rocket motor application. These blades operate in severe thermal transients that result in

large inelastic strains, and several types of behavior must be considered.The elevated temperatures

can lead to thermal buckling and, in addition, creep can be expected to occur. Thus, a combination

of thermal-creep buckling behavior leading to large deflections can be anticipated. Because of the

cyclic character of the mechanical and thermal loads, progressive growth or ratchetting effects must

also be considered. Thus, geometric and material nonlinearities (of high orders) can be anticipated

and must be considered in the mathematical model.

Consequently, the industry is concerned with the behavior of thin shell-like structural

elements subjected to severe time-dependent thermomechanical loading. Such thin elements,

including beams, rings, arches, plates and shells, are presenting generic types of components,

which might be located within or adjacent to the hot section of a rocket or a gas turbine engine.

The experience in the gas turbine engine industry indicates, however, that existing analytic

tools are not sufficiently reliable to accomplish this task. State of the art methods for predicting hot

section component behavior are generally not sufficiently accurate to perform extended use

evaluations.

Under this kind of severe loading conditions, the structural behavior is highly

nonlinear due to the combined action of geometrical and physical nonlinearities. On one side, finite
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deformation in a stressed structure introduces nonlinear geometric effects. On the other side,

physical nonlinearities arise even in small strain regimes, whereby inelastic phenomena play a

particularly important role. From a theoretical standpoint, nonlinear constitutive equations should

be applied only in connection with nonlinear transformation measures (implying both deformation

and rotations). However, in almost all of the works in this area, the two identified sources of

nonlinearities are always separated. This separation yields, at one end of the spectrum, problems

of large kinematics, while at the other end, problems of viscous and/or non-isothermal behavior in

the presence of small strain.

Because of the nature of the causes, special care is needed in the selection or development

of a constitutive law that includes time and temperature effects. Although there exists a sizeable

body of literature on phenomenological constitutive equations for the rate- and temperature-

dependent plastic deformation of metallic materials, to date rational and thermodynamically

consistent elastic-thermoviscoplastic constitutive relations capable of incorporating the effects of

large strains and rotations have not been demonstrated.

Constitutive models for small strain in engineering literature may generally be grouped into

three categories: classical plasticity, nonlinear visoelasticity, and theories based on microstructural

phenomena. Each group can be further separated into "unified" and "uncoupled" theories, where

the two differ in their approach to the treatment of rate-independent and rate-dependent inelastic

deformation. The uncoupled theories decompose the inelastic strain rate into a time-independent

plastic strain rate and a time-dependent creep rate with independent constitutive relations describing

plastic and creep behavior. Such uncoupling of the strain components provides for simpler

theories to be developed but precludes any creep-plasticity interaction. Recognizing that cyclic

plasticity, creep and recovery are not independent phenomena but rather are very interdependent, a

number of "unified" models for inherently time-dependent nonelastic deformation have been

developed recently.
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Classical incremental plasticity theories are macrophenomenological because they base the

derivation of state variables purely on experimental results without direct reference to the

microstructure of the material. Most incremental plasticity theories have four major components:

(1) stress-elastic strain relations, (2) a yield function describing the onset of plastic deformation,

(3) a hardening rule which prescribes the strain-hardening of the material and the modification of

the yield surface during plastic flow, and (4) a flow rule which defines the components of strain

that are plastic or nonrecoverable.

Research in this area is voluminous. For example, Zienkiewicz and Cormeau [I]

developed a rate-dependent unified theory which allows for nonassociative plasticity and strain

softening, but does not model the Bauschinger effect or temperature dependence. Extensions of

classical plasticity to model both rate and temperature effects were presented recently by Allen and

Haisler [2], Haisler and Cronenworth [3], and Yamada and Sakurai [4].

In the nonlinear viscoelastic approach, the constitutive relation is expressed as a single

integral or convoluted form. This type of constitutive model employs the thermodynamic laws

along with physical constraints to complete the formulation. A detailed review of several existing

theories is presented by Walker [5]. Walker's [5] theory is based on a unified viscoplastic integral

developed by modifying the constitutive relations for a linear three parameter viscoelastic solid.

The theory contains clearly defined material parameters, a rate-dependent equilibrium stress, and a

proposed multiaxial model. An important shortcoming of Walker's theory is its failure to model

transient temperature conditions. Many other nonlinear viscoelastic theories have been proposed

including those by Cernocky and Krempl [6], Valanis [7], and Chabache[8].

The microphenomenological theories attempt to represent the response of polycrystalline

materials in terms of various micromechanisms of deformation and failure. Various dislocation

theories have been developed to predict plastic deformation in terms of dislocation interaction, slip,

glide, density, etc. Most of the material models developed, to date, depend primarily on the

number of state variables used and their growth or evolutionary laws. Many of the recent 'unified'
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microphenomenological theories have been discussed and evaluated by Walker [9] and Chan et al.

[10].

One example of a microphysicaUy based constitutive law is an elastic-viscoplastic theory

based on two internal state variables as proposed by Bodner, et al. [11]. These authors,

demonstrate the ability of the constitutive equations to represent the principal features of cyclic

loading behavior including softening upon stress reversal, cyclic hardening or softening, cyclic

saturation, cyclic relaxation, and cyclic creep. One limitation of the formulation though is that the

computed stress-strain curves are independent of the strain amplitude and therefore too "flat" or

"square".

Miller [12] has reported research on the modeling of cyclic plasticity with "unified"

constitutive equations. He also recognizes the shortcomings of many theories in predicting

hysteresis loops, which are oversquare in comparison to observed experimental behavior.

Improvement is accomplished by making the kinematic work-hardening coefficient depend on the

back stress and the sign of the nonelastic strain term. Theories that are similar in format to Miller's

have been proposed by Krieg, Swearengen and Rhode [13] and by Hart [14]. The models use two

internal state variables to reflect current microstructure state and are based upon models for

dislocation processes in pure metals. All these constitutive theories were formulated without the

use of a yield criterion. Since these models do not contain a completely elastic regime, the function

that describes the inelastic strain rate should be such that the inelastic strain rate is very small for

low stress levels. Theories with a yield function and a full elastic regime have been developed for

the case of isotropic and directional hardening by Lee and Zavrel [ 15].

As previously noted, the quantities utilized in the small strain theory of viscoplasticity

(stress, strain, stress rate, and strain rate) are defined only within the assumption of "small strain",

but this is always left unstated. Whether or not the strains for a given case are "small" cannot be

determined a priori by geometric considerations. In general, one cannot know in advance whether

for a given loading of a material the "small strain" assumption (always left undefined) will hold or
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not. The question of whether the small-strain approximations are valid is always avoided in the

"small strain" literature. Furthermore, as Hill [ 16] points out, the really typical plastic problems

involve changes in geometry that cannot be disregarded. In many cases, for example, it is

sufficient to take into account finite plastic strains and small elastic strains or vice versa. From the

theoretical viewpoint it is desirable in all cases to have a theory which intrinsically allows for both

the elastic and plastic strains to be large. Such a theory of course, must reduce to the earlier

mentioned special cases, as limiting cases. Furthermore, such theories provide a check for those

which are obtained by generalizing small strain theories.

The mathematical theories of deformation and flow of matter deal essentially with the gross

properties of a medium. Heat and mechanical work are considered as additional causes for a

change of the state of the medium. The resulting phenomena in any particular material are not

unrelated. Therefore, a thermodynamical treatment of the foundation of the theory of flow and

deformation is appropriate, and indeed the obvious approach. Two very different main approaches

to a thermodynamic theory of a continuum can be identified. These differ from each other in the

fundamental postulates upon which the theories are based. An essential controversy can be traced

through the whole discussion of the thermodynamic aspects of continuum mechanics. None of

these approaches is concerned with the atomic structure of the material. They, therefore, represent

purely phenomenological approximations. Both theories are characterized by the same

fundamental requirement that the results should be obtained without having recourse to statical or

kinetic methods.

Within each of these approaches there are two distinct methods of describing history and

dissipative effects: the functional theory [18], in which all dependent variables are assumed to

depend on the entire history of the independent variables, and the internal variable approach [19],

wherein history dependence is postulated to appear implicitly in a set of internal variables. For

experimental as well as analytical reasons[20, 21] the use of internal variables in modeling inelastic
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solids is gaining widespread usage, in current research. The main differences among the various

modem theories lie in the choice of these internal variables.

The predictive value of an elastic- viscoplastic material model for non-isothermal, large

deformation analyses depends therefore on three basic elements:

a) the nonlinear kinematic description of the elastic-plastic deformation.

b) termodynamic considerations, and

c) the choice of external and internal thermodynamic variables as well as on their interactions.

The problem of viscoplastic deformations in shells has been treated at several levels of

approximation and generality.

The simplest approaches (see [22])are based on the assumption of infinitesimal

displacement gradients (which implies infinitesmal strains) and a material model of stationary

creep, sometimes with an approximate inclusion of primary creep.

A more general analysis utilizes shell kinematics for moderately large displacement

gradients (at least some of them), infinitesimal strains, and material models of stationary or simple

non-stationary creep (see [22]). This type of assumption is capable of solving problems of creep

buckling [23], and it does reproduce the sometimes stiffening effect of the interaction between the

normal forces and the normal deflection. Extension of this kind of formulation with a viscoplastic

material model is presented in [24-26]. The use of numerical methods [27] makes possible the

solution for many non-trivial types of structures.

The problems of large strains, which arise in the analysis of large creep or thermal

deformation of shells, have not been treated at all in a general manner. Recognizing that finite

strain effects are present in these problems, reliable prediction demands that such effects be

included rationally and properly in the analysis. In addition to the necessary basic kinematical and

dynamical equations of the shell theory, such an analysis must incorporate a correctly invariant

formulation of the material equations and requires an evaluation of the strain-rate tensors through
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the thickness of the shell. Such an analysis cannot be found in explicit form, at least in the readily

accessible engineering literature.

Several authors have developed mathematical description of the kinematics of the three

dimensional deformation of elastic or viscoelastoplastic materials [28, 29]. However, it is not

clear how to best select the reference space and configuration for the stress tensor, bearing in mind

the rheologies of realistic materials. Although an intrinsic relation, which satisfies material

objectivity can be used [30, 31], the choice is not unique (see for example [29], [32], [33]).

For shell-like structures, failure may be caused by buckling. Thus, stability can be a

primary consideration in the structure design. In a high temperature enyironment, there will be

much more concern on this issue, because the inelastic deformation may lead to a geometrical

imperfection which, in turn, may further decrease the load carrying capability. Therefore, stability

of shell-like structures can become the main concern for designers, and buckling and postbuckling

behavior of shell-like structures (see [34]) must be studied.

In the analysis of shell-like structures, it is worthwhile to note that Donnell [35] and

Sanders [36] made great contributions in the formulation of nonlinear shell theories. Many

applications are based on their formulation and simplifications.

For a long time, the research efforts have been put into the subject on how to improve the

discrepancy between the theoretical and experimental results. The present trend in buckling and

postbuckling analyses is to relax several of the assumptions in classical theories and employ

nonlinear kinematic and constitutive relations.

As the complexity of shell-like structures increases and as the computational capability

improves, numerical methods play a major role in predicting buckling and in enhancing our

understanding of postbuckling response.

The finite element analysis for shell structures has been the subject of interest for many

years. There have been many published works in this field. Most of them deal with elastic-plastic

material behavior. Some of them also deal with geometric nonlinearity and postbuckling behavior.



=_ .

w

=

w

w

Ahmad, Irons and Zienkiewicz [37] first proposed the 'degenerated' three dimensional

isotropic element which can be used in the linear analysis of thin shells. The basic assumption

used in [37] is that the normal will remain normal to the deflected midsurface, straight and

inextensional after deformation. With this assumption, the displacement field in the shell can be

expressed in terms of five degrees of freedom (three translations and two rotations) of the nodes

which are located in the middle surface.

The 'degenerated' 3-D element was extended to the geometrically nonlinear analysis of

shells by Ramm [38]. He used both quadratic and cubic interpolation functions in his work. The

development is based on total Lagrangian formulation.

Bolouchi [39] developed various shell elements with 8-16 nodes. His work is based on

both total Lagrangian and updated Lagrangian formulations.

At the same time, finite element analysis has been adopted to the area of nonlinear

continuum mechanics. It made it possible to obtain solutions to a large class of nonlinear problems

with acceptable accuracy.

J.T. Oden [40, 41] extended the elastic theory of finite elements to the hyper-elastic and

visco-elastic field.

In 1968, H.D. Hibbitt, D.V. Marcal and J.R. Rice [42] first introduced hypo-elastic

formulation into the finite element analysis. They adopted the incremental theory based on a

Lagrangian reference frame and their formulation is suitable for large strain and large displacement

response. In their work, they used a linear relation between the Jaumann stress increments and

increments of the deformation tensor which are invariant with respect to rigid body rotation. The

formulation for small strain and large rotation approximation is also proposed in their work.

Needleman [43] derived similar finite element equations from variational principles given

by Hill [44]. The work is also based on the Lagrangian formulation.

The Eulerian formulation which is based on the current configuration has been used by

Yaghmai and Popov [45]. They derived the equations by means of variational principles and
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solved someelastic and elastic-plasticproblems. Similar work wasdone by Gunasekeraand

Alexander [46]. They gavetheir equationsfor Prandtl-Reussplastic materialsand derived the

equationsfrom theprincipleof virtualwork.

In 1974, R.M. McMeeking and J.R. Rice [47] introduced Eulerian finite element

formulationfor largeelastic-plasticflow, which is parallelto thetreatmentof [42]. Themethodis

basedon Hill's variational principle for incremental deformations. It is ideally suited for

isotropicallyhardeningPrandtl-Reussmaterials.

T.Y. ChangandK. Sawamiphakdi[38] adoptedthehypoelastictheoryto thedegenerated3-

D isoparametricelementfor laminatedanisotropicshells.Thenonlineargeometricstiffnessmatrix

which is basedon Lagrangiandescription was developedand someexampleproblemswere

presented.

Generally, the Newton-Raphsonintegration method is used to achieve the correct

equilibrium positions in the nonlinear finite elementcomputations. However, it is no longer

appropriate to use it in establishing post buckling response. The reason is that the stiffness matrix

tends to be singular resulting in an increasing number of iterations. Finally, the result will diverge

at the critical point. In order to overcome these problems and to trace the response beyond the

critical point, several efficient methods have been developed [48, 49].

Bergan [50] introduced the 'current' stiffness parameter' to guide the equilibrium

iterations. When the parameter reaches the prescribed value, the execution of iterations stops. At

that time, the displacement continues to increase until a new parameter value is reached. This

means that the iterations are suppressed near the critical point. The algorithm of this method is

simple and the program is easy to develop from the Newton-Raphson method. The drawback is

that the load step in the neighborhood of the critical point need still be small.

Argyris [52] and several other researchers introduced the displacement control method. In

this scheme, a single displacement component is selected as a control parameter and the

corresponding load level is considered to be unknown. In the initial paper, the symmetry of the

10
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stiffness matrix is damaged. The method, then, was improved as a two step method [52, 53], in

order to preserve the symmetry of the stiffness matrix. The displacement control method is

relatively widely used since it is both efficient and easy to control. The limitation of this method is

that it will fail whenever the structure snaps back from one load level to a lower one.

Riks [54, 55], and Wempner [56] independently introduced the constant-arc-length

method. The load increment in this method is confined by the equation of arc length. The

increments of load and displacement vector are mixed. The f'mal equilibrium position is located by

continuing drawing a normal plane to the new tangent of the load-displacement curve. Generally

speaking, this method is efficient in the entire load range and can be applied to all possible

nonlinear structural responses.

Crisfield [57, 58] further modified Riks' method. He introduced line searches into the

constant-arc-length algorithm. In addition, he developed a scheme in which a single parameter is

employed to accelerate the speed of convergence using the line search concept. His work makes

Riks' method more efficient and also much easier for programming.

2. SUMMARY OF WORK

The progress made and the work performed have been elaborated upon in an interim

scientific report submitted to the sponsor in late 1986, and in a series of semiannual progress

reports. The most recent of these is dated October I989.

2.1 Traditional Approach

Following a traditional approach, a method was developed for bounding the response of

problems of viscoelastic material behavior, based on nonlinear kinematic behavior. Upper and

lower bounds are established through bounding of the convolution integral of the governing

nonlinear Volterra-type integral equation. Details of the method can be found in the first paper of

Appendix A.

11
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Next, a differential (as opposed to integral) methodology for solution of one-dimensional,

kinematically nonlinear, visoelastic problems was developed. Using the example of an

eccentrically loaded cantilever beam-column, the results from the differential formulation were

compared to the results obtained from the integral solution technique. The details of this are

found in the second paper of Appendix A. This paper also includes a discussion of the various

factors affecting the numerical accuracy and rate of convergence of the two procedures.

Moreover, the influences of some "higher order" effects, such as straining along the centroidal

axis, are also discussed.

Finally, an analytic study of beams and arches subjected to significant thermal cycling from

ambient temperatures up to 800"C is presented. In this study, Walker's [9] unified nonlinear

hereditary type of viscoelastoplastic constitutive law is employed to characterize the time-and

temperature-dependent properties of a typical aerospace alloy, Hastelloy X.

The details are given in the third paper of Appendix A. A shorter version of this paper was

published in the ASME Journal of Engineering Materials and Technology (January 1990 issue).

The PVP-Vol. 153 version is made part of this report, because it contains more detail.

2.2 Novel Approach

A complete true ab-initio rate theory of kinematics and kinetics for continuum and curved

thin structures, without any restriction on the magnitude of the strains or the deformation, was

formulated. The time dependence and large strain behavior are incorporated through the

introduction of the time rate of the metric and curvature in two coordinate system; a fixed (spatial)

one and a convected (material) coordinate system. The relations between the time derivative and

the covariant derivatives (gradients) have been developed for curved space and motion, so that the

velocity components supply the connection between the equations of motion and the time rate of

change of the metric and curvature tensors.

The metric tensor (time rate of change) in the convected material coordinate system is

linearly decomposed into elastic and plastic parts. In this formulation, a yield function is assumed,

12
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which is dependent on the rate of change of stress, metric, temperature, and a set of internal

variables. Moreover, a hypoelastic law was chosen to describe the thermoelastic part of the

deformation.

A time and temperature dependent viscoplastic model was formulated in this convected

material system to account for finite strains and rotations. The history and temperature dependence

were incorporated through the introduction of internal variables. The choice of these variables, as

well as their evolution,was motivated by phenomenological thermodynamic considerations.

The nonisothermal elastic-viscoplastic deformation process was described completely by

"thermodynamic state" equations. Most investigators (in the area of viscoplasticity) employ plastic

strains as state variables. Our study shows that, in general, use of plastic strains as state variables

may lead to inconsistencies with regard to thermodynamic considerations. Furthermore, the

approach and formulation employed by all previous investigators lead to the condition that all

plastic work is completely dissipated. This, however, is in contradiction with experimental

evidence, from which it emerges that part of the plastic work is used for producing residual

stresses in the lattice, which, when phenomenologically considered, causes hardening. Both

limitations are not present in our deformation, because of the inclusion of the "thermodynamic

state" equations.

The obtained complete rate field equations consist of the principles of the rate of the virtual

power and the rate of conservation of energy, of the constitutive relations, and of boundary and

initial conditions. These formulations provide a sound basis for the formulation of the adopted

finite element solution procedures.

The derived shell theory, in the least restricted form, before any simplifying assumptions

are imposed, l_as the following desirable features:

(a) The two-dimensional, impulse-integral form of the equations of motion and the Second

Law of Thermodynamics (Clausius-Duhem inequality) for a she//follow naturally and

from their three-dimensional counterparts.

13
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(b) Unique and concrete definitions of shell variables such as stress resultants and couples, rate

of deformation, spin and entropy resultants can be obtained in terms of weighted integrals

of the three-dimensional quantifies through the thickness.

(c) There are no series expansions in the thickness direction.

(d) There is no need for making use of the Kirchhoff Hypotheses in the kinematics.

(e) All approximations can be postponed until the descretization process of the integral forms

of the First Law of Thermodynamics.

(f) A by-product of the descent from three-dimensional theory is that the two-dimensional

temperature field (that emerges) is not a through-the-thickness average, but a true point by

point distribution. This is contrary to what one finds in the literature concerning thermal

stresses in the shell.

To develop geometrically nonlinear, doubly curved finite shell elements the basic equations

of nonlinear shell theories have to be transferred into the finite element model. As these equations

in general are written in tensor notation, their implementation into the finite element matrix

formulation requires considerable effort.

The nonlinear element matrices are directly derived from the incrementally formulated

nonlinear shell equations, by using a tensor-oriented procedure. The classical thin shell theory

based on the Kirchoff-Love hypotheses (Formulation D) was employed for this purpose. For this

formulation, we are using the "natural" degrees of freedom per midsurface shell node: three

incremental velocities and the rates of rotation about the material coordinates in a mixed form.

The quasi-linear nature of the principle of the rate of virtual power suggests the adoption of

an incremental approach to numerical integration with respect to time. The availability of the field

formulation provides assurance of the completeness of the incremental equations and allows the

use of any convenient procedure for spatial integration over the domain V. In the present instance,

the choice has been made in favor of a simple first order expansion in time for the construction of
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incremental solutions from the results of finite element spatial integration of the governing

equations.

The procedure employed permits the rates of the field formulation to be interpreted as

increments in the numerical solution. This is particularly convenient for the construction of

incremental boundary condition histories.

Even under the condition of static external loads and slowly growing creep effects, the

presence of snap-through buckling makes the inertia effects significant. In dynamic analyses, the

applied body forces include inertia forces. Assuming that the mass of the body considered is

preserved, the mass matrix can be evaluated prior to the time integration using the initial

configuration.

Finite element solution of any boundary-value problem involves the solution of the

equilibrium equations (global) together with the constitutive equations (local). Both sets of

equations are solved simultaneously in a step by step manner. The incremental form of the global

and local equations can be achieved by taking the integration over the incremental time step

t=tj÷l-tj. The rectangular rule has been applied to execute the resulting time integration.

Clearly, the numerical solution involves iteration. A simplified version of the Riks-

Wempner constant-arch-length method has been utilized. This iteration procedure which is a

generalization of the displacement control method also allows to trace the nonlinear response

beyond bifurcation points. In contrast to the conventional Newton-Raphson techniques, the

iteration of the method takes place in the velocity and load rate space. The load step of the first

solution in each increment is limited by controlling the length ds of the tangent. Either the length is

kept constant in each step or it is adapted to the characteristics of the solution. In each step the

triangular-size stiffness matrix has to be checked for negative diagonal terms, indicating that a

critical point is reached.

The study is limited only to the simplest of the developed shell theory formulations

(Formulation D).
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The various shell theory approximations (formulations) are based on the use of certain

simplifying assumptions regarding the geometry and kinematics of the shell configuration.

These are:

Assumption i" The material points which are on the normal to the reference surface before

deformation will be on the same normal after deformation.

Assumption II: The shell is sufficiently thin so that we can assume linear dependence of the

position of any material point (in the deformed state) to the normal (to the reference surface)

coordinate (in the deformed state). The linear dependence can easily be changed to parabolic,

cubic, or any desired degree of approximation.

Assumption III: The rate of change of the velocity gradients with respect to in-plan coordinates on

the two bounding shell surfaces is negligibly small.

Assumption IV; The rate of change of the distance of a material from the reference surface is

negligibly small.

On the basis of the above four simplifying assumptions, several formulations result, for the

analysis of thin shells. These formulations are denoted below by capital letters.

Formulation A: This formulation makes use of Assumption I, only.

Formulation t_: This formulation employs Assumptions I and II.

Formulation C: This formulation employs Assumption I, II and Ill.

Formula[iQn D: This is the classical thin shell theory based on the Kirchoff-Love

hypotheses of Assumptions I, II, HI, IV, as applied to large deformation theory.

These formulations are arranged in such a manner that we move from the least restrictive

(A) to the most restrictive (D).

In addition to this, a fifth formulation (E) can easily be devised and this formulation in

terms of order of restriction is similar to Formulation A. Formulation E makes use of Assumption

II only.
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Three papers are included as Appendix B. These papers reflect the work associated with

the novel approach and provide detail in formulation as well as in application.

3. PUBLICATIONS AND PRESENTATIONS

Several presentations and publications resulted from this project. Moreover, two Ph.D.

students were supported (one has already received the degree, the second is expected to complete

the requirements by the end of 1990), as well as one postdoctoral fellow and three faculty members

(Drs. R.L. Carlson, R. Rift and G.J. Simitses) of the Georgia Institute of Technology.

A list of the presentations and publications is given below:

3.1 Presentations

I. "Thermodynamically Consistent Constitutive Equations for Nonisothermal, Large Strain,

Elasto-Plastic Creep Behavior," 26th AIAA/ASME/ASCE/AHS Structures Structural

Dynamics and Materials Conference, Orlando, FL., April 14-17, 1985.

2. "Dynamic Creep Buckling: Analysis of Shell Structures Subjected to Time-Dependent

Mechanical and Thermal Loading," NASA Conference on Structural Integrity and Durability

of Reusable Space Propulsion Systems, Cleveland, OH., June 4-5, 1985.

3. "Bounding Solutions of Geometrically Nonlinear Viscoelastic Problems," 27th Structures,

Structural Dynamics and Materials Conference, San Antonio, TX, May 4-6, 1986.

4. "Dynamic Analysis of Shell Structures Subjected to Mechanical and Thermal Loading,"

AFOSR/ARO Conference on Non-Linear Vibrations, Stability, and Dynamics of Structures

and Mechanisms, Blacksburg, VA, March 23-25, 1987.
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Bounding Solutions of Geometrically
Nonlinear Viscoelastic Problems

John M. Stubstad ° and George J. Simitsesl

Georgia Institute of Technology, Atlanta, Georgia

A method is presented for bounding solutions to problems of linear viscoelastic material behavior formulated
using nonlinear kinematic measures of deformation. Upper and lower bounds are established through bounding
of the convolution integral of the governing nonlinear Volterra-type inlegral equation. A significant feature of
the manner in which these bounding solutions are generated is Ihal lime may be treated as a parameter, thereby
casting the bounding solulions into a quasielaslic context. Consequently, numerical evaluation is simplified since
the necessity of continually approximating convolution integrals of the deformation history, required for exact
solution, is eliminated. This, in turn, results in a substantial reduction in the compulational effort required for
numerical evaluation. In one of the example problems considered, this reduction translates into more than a
thirtyfoid difference in computer time needed for determination of the exact and bounding solutions. Applica-
tion of the bounding technique is demonstrated through two examples and includes a limited comparison with
some recently published experimental data.
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Nomenclature

= load eccentricity
= elastic constants of ideal viscoelastic material

= Green's function for the spatial integrals
= moment of inertia

= creep compliance
= Laplace transform of creep compliance
= generic kernel of convolution integral
= integrated form of k(t- r)

= length of beam
= Laplace transform operator
= bending moment at position s' and time r

= Laplace transform variable
= time-independent load
= Euler load

= time-dependent load
=dimensional and nondimensional distance

along the beam, respectively
=time

= spatial coordinates
= angle of rotation of the end of the cantilever

column
= lateral and transverse deflection of the end of

the beam, respectively
= viscous coefficient of ideal viscoelastic material

= generic representation of a spatial integral

= curvature at position s' and time t

= scalar parameter
=relaxation constant of ideal viscoelastic

material

= angle of rotation of the cantilever at position s'
and time r

= Laplace transform of angle of rotation
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Subscripts

qe
ub, lb

= quasielastic solution

= upper and lower bounds, respectively

Intrbduction

NTEGRAL transform techniques, such as the Laplacetransform, provide simple and direct methods for solving

viscoelastic problems formulated within a context of linear

material response and using linear measures for deformation.

Application of the transform operator reduces the governing

linear integrodifferential equations to a set of algebraic rela-
tions between the transforms of the unknown functions, the

viscoelastic operators, and the initial and boundary condi-

tions. Inversion, either directly or through the use of the ap-

propriate convolution theorem, provides the time domain

response, once the unknown functions have been expressed ir_

terms of sums, products, or ratios of known transforms.
When exact inversion is not possible, approximate techniques,

such as suggested by Schapery,t may provide accurate results.

The overall problem becomes substantially more complex
when nonlinear effects must be included. We consider here

situations where a linear material constitutive law can still be

productively employed, but where the magnitude of the

resulting time-dependent deformations warrants the use of a

nonlinear kinematic analysis. The governing equations will

be nonlinear integrodifferential equations for this class of

problems. Thus, traditional as well as approximate tech-

niques, such as cited above, cannot be employed since the

transform of a nonlinear function is not explicitly expressible.

Rogers and Lee: considered such a problem in an in-

vestigation of the finite deflection of a viscoelastic cantilever

beam. Employing an analogy of an associated elastic prob-

lem, they derived a solution to the viscoelastic problem in a
form involving a time convolution of a nonlinear space and

time-dependent integral function. Numerical evaluation was

accomplished using Picard's method of successive sub-
stitutions. Newton-Coates quadratures were employed to ap-

proximate the spatially dependent integral relationship; a
mean-value-based finite-difference formula was used for the

time convolution.

Solution procedures of this type are generally w'elI suited
for computer implementation. However, the>" ear, become
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computationally inefficient when the response must.be deter-
mined over an extended time period. Each increment in time
requires a reevaluation of the convolution integrals. Thus,
the entire deformation history must be retained in memory

w during the calculations, Since each completed set of com-
putations adds another set of results to this history, this
generates an ever-increasing memory requirment. In addi-
tion, the total number of computations performed during
each succeeding iteration also increases.

In this regard, an approximation technique proposed by
Schapery J can provide an attractive alternative. Commonly
referred to as the quasielastic approximation, it has most

_.__ recently been employed by Vinogradov* and Vinogradov and
Wijeweera s in studies of the behavior of eccentrically loaded
viscoelastic cantilever columns.

The method is based on the observation that the solution
procedure developed by Rogers and Lee2 may be interpreted
as a sequence of short-time interval quasielastic solutions.
This suggests that approximate solutions may be generated
by replacing the original viscoelastic problem by an
"equivalent" time-dependent elastic one. In this replacement
problem, the elastic properties are equated to the instan-
taneous values of the relaxation moduli or creep compliances
of the viscoelastic material.

The inherent numerical advantage provided by this tech-
nique is that it eliminates the potentially inefficient calcula-
tion of convolution integrals. Thus, the speed and efficiency

:= at which the time-dependent response is calculated is in-
_.m dependent of elapsed time. The obvious potential disadvan-

tage is that, since it is an approximation, significant dif-
ferences may exist between the actual response of the visco-

- elastic body and those predicted quasielastically. In addition,
= : the quasielastic method does not provide a direct method for

assessing whether any errors incurred are conservative.
In this paper, we present an approximation technique that

provides both upper- and lower-bound predictions for the
- class of viscoelastic problems under consideration. From
--" these bounds, one may readily deduce when the approxima-

tion provides sufficiently accurate results or when more in-
- volved techniques must be used. Finally, we demonstrate

that solutions for this class of viscoelastic problems can be
"" accomplished within a Laplace transform context, even

though the transformed functions cannot be expresssed as
- explicit functions of the transform variable.

Preliminaries

As a motivation for the development, consider an integral
equation of the form

f¢(x,t) =_ k(t-r)O(x,r)dr (1)
0

where ¢(x,r) and O(x,r) may be scalar, vector, or tensor
functions of position vector x and time r. We shall assume
that the kernel k(r) is positive semidefinite over the range of
integration and h is some scalar parameter. In addition, we
assume that k(r), ,¢(x,r), O(x,r), and their first partial
derivatives with respect to r are continuous over the interval
0 ÷ <r<t. Finally, we assume that ¢(x,r) and O(x,r) are
continuous with respect to x over some closed domain D
and possess continuous first and second partial derivatives
with respect to x over at least the interior of the domain.

For the class of problems under consideration, the func-
tion 0(x,z) represents a spatial integral in which ¢(x,r) ap-
pears in the integrand in a nonlinear manner. Depending
upon the boundary conditions, O(x,r) may also include ad-
ditive nonlinear forms of _p(x, r). Thus, Eq. (!) may be viewed
as a Voiterra-type integral equation of the second kind.

Let us assume that, even before specific solutions have
been generated, we are able to infer some information about
the _.eneral manner in which Ofx.r_ behaves. Suppose, for

example, that O(x,r) represents some measure of deflection
which (we deduce) must be a nondecreasing function with
respect to time. Thus, over the interval 0 '__;r<t, this would
imply

O(x,O÷ )<_O(x,r) <-O(x,t) (2)

This suggests that if we establish the approximate solutions

t,plb=h k(t-r)O(x,O÷ )dr (3a)
0

_Oub =hI_ k(t-r)O(X,t)dr (3b)

where subscripts ub and Ib denote upper and lower bounds,
respectively, we can then define difference functions Aetn
and A_o_nby

Aetb = ¢ (X,t) -- ¢_b (4a)

A¢.b = ¢,b - ¢ (x, t) (4b)

Then substitution of Eqs. (1) and (3) into Eq. (4) yields

tAsotn=h k(t-r)[O(x,r)-O(x,O+)ldr (Sa)
0

IA,¢,0 = h k(t-r)[O(x,t)-O(x,r)]dr (5b)
0

As a direct consequence of Eq. (2), the quantities enclosed
by square brackets in Eqs. (5) must be positive semidefinite
for all values of time _'. Because both O(x,O ÷) and O(x,t) are
constant with respect to r, the square bracket terms must be
continuous in r since, by prior assumption, O(x,r) is con-
tinuous in r. Thus, for a continuous and positive semdefinite
kernel, the integrand is continuous and positive semidefinite
over the entire range of integration. Consequently, for
positive X, the differences Aea, and ,_'P_L, must be positive
for all time. Therefore, the approximate solution 'P,b must
represent an upper bound for the exact solution. Similarly,
eto must inherently bound the exact solution from below.

The numerical advantages provided by working with the
bounding functions are easily demonstrated. Letting

tK(t) =X k(t-r)dr (6)
0

and noting that O(x,O ÷) and O(x,t) are independent of r im-
ply that Eqs. (3) have the form

and

¢1t,= K ( t)O (x, O+) (7a)

¢,_ =K(t)O(x,t) (7b)

Thus, the time convolution of the exact solution [Eq. (1)]
has, in the bounding formulation, been replaced by a format
in which time appears only as a parameter. Consequently,
numerical solution of Eqs. (7) requires integration only over
the spatial coordinates, whereas the exact solution requires
both spatial and temporal integrations.

The preceding development was based upon the assump-
tion that O(x,r) was a nondecreasing function with respect to
time. The technique is easily adapted to cases where O(x,r) is
a nonincreasing function. Thus, if

O(x,O÷ )>-O(x,r) >-O(x,t) (8)



NOVEMBER 1986 GEOMETRICALLY NONLINEAR VISCOELASTIC PROBLEMS 1845

we can replace Eqs. (3) with

and

etb = xS_ k(t-r)O(x,t)dr (9a)

_,b =XS_ k(t-r)O(x,O+)dz (9b)

Thereafter, proceeding as before generates the desired
bounding behavior. In a similar manner, a simple series of

modifications to the definitions of the bounding functions

are needed when X is a negative rather than positive scalar.

Applications of the bounding technique, including com-

parisons with exact "solutions, are provided in the following
sections.

Applications

w End-Loaded Cantilever Beam

As noted earlier, Rogers and Lee 2 developed the first, and
a numerically exact, solution for the problem of an end-
loaded linearly viscoelastic cantilever beam. The solution, in

the general form of Eq. (1), was evaluated by employing
Newton-Coates quadratures for the spatially dependent in-

=- tegral function 0(x,r) and a mean value based finite-
difference formula for the convolution with k(t-r). Several

years later, Schapery, 3 in a paper describing the quasielastic
method, presented an approximate solution for this problem.
Since this approximate solution was in the form of Eqs. (7),

_ Schapery was able to generate numerical results directly from
the elastic analysis presented in Ref. 2. Thus, his solution re-

quired only numerical evaluation of a spatially dependent in-

- tegral equation with time treated as a parameter.

- Here, we analyze the same problem using the bounding
w procedure. It is demonstrated that Schapery's approximate

solution is, in fact, a lower-bound solution for a suitably

=_ restricted range of deformation. In addition, it is shown that

a reasonably close upper-bound solution may be readily ob-
"- tained.

Derivation of the governing integrodifferential equation is

documented in Ref. 2 and thus only summarized here. The

beam is assumed to be thin and composed of a linearly visco-

elastic material. Its geometry in the deformed configuration
is illustrated in Fig. 1. The loading is assumed to be applied

= quasistatically and thus inertia terms are neglected.
= Reference line extensional strains are assumed to be

u negligibly small. Thus, a coordinate s' is employed to specify
position in both the initial and the deformed states. A non-

= dimensional coordinate s is defined by dividing s' by the

beam length L. Assuming a linear distribution of strains

:_" through the depth, bending thus occuring within a Bernoulli-

Euler context, results in the moment-curvature relationship

- given by

2

! t.,<,.,,= _r "J (10)

where K(s',t) denotes the curvature and M(s',r) the bend-
ing moment at location s'. I is the moment of inertia of the

beam and J(t) the creep compliance of the material. The
moment at position s' is given by

M(s',r) = R (r) [L -x(s',r) - A (r) ] (11)

where R(r) is the end load (see Fig. 1).
From kinematic considerations, we note that

a_ (s',t)
x(s,,t) = (12a)

as'

ax(s,,t)

aS '

=COS¢(S',t) (12b)

=sin_(s',t) (12c)

Substitution of Eqs. (11) and (12a) into Eq. (10), differentia-

tion with respect to s' and use of Eq. (12b) yield, after non-
dimensionalization

02¢(s,t) (L'_ [t I.ig[R(r)cos¢(s,r)]lTff = - k--F/J-. J(t-7) aT d_

(13)
The associated boundary conditions are

(O,t) = 0 (14a)

O¢(l,t)

as
--=0 (14b)

It is assumed the beam is undeformed for r<0. Then, by

taking the Laplace transform of Eqs. (13) and (14), we
obtain

a24b(s'P) L(_.7_)Os_ = - p_q(p)_v[R(r)cos_(s,r)] (15a)

¢ (O,p) =0 (15b)

ai(l,p)
as

_=0 (15c)

where £p[ ] is the Laplace transform operator, p the
transform variable, and _(p) and 4,(s,p) the transforms of

J(t) and _v(s,t), respectively. Here, we have tacitly assumed

that the Laplace transform of the expression within the

brackets exists, in the usual sense, even though a formal ex-

pression for it is not available.

Assuming that the transform variable appears only as a

parameter, Eq. (15a) can be viewed as a type of ordinary dif-

ferential equation. Integration thus yields

0¢ (s,p) O¢(O,p)

Os Os

"-tv)PJ(P'_0 Is: e-mR (r)cos,_ (u,r)dr] du (16)

where the Laplace transform has been expressed in the ex-

plicit manner. Application of the boundary condition, as

_[R(tt

Fi l, I Geomelry of ihe end-loaded cantilever beam.
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Fig. 2 Angle of deflection of the end-loaded cantilever beam.

given by Eq. (15c), yields

a¢,(o,p)_= _-f)PJ(P)Jo e-_e(r) o cos_(u,r)du dr

(17)

Note that we have interchanged the order of integration of

Eq. (16). This follows directly from the assumption of inex-
tensionality; therefore, s and r represent independent vari-
ables. Substitution of Eq. (17) into Eq. (16) yields

Oc)(s,p)=_(L.___)pcq(p)as fo e-mR(z)

x[f(cos_(u,r)du]dr (18)

Integration of Eq. (18) with respect to s, use of the bound-

ary condition [Eq. (15b)], and manipulation as before yield

The term in the brackets may be simplified through integra-

tion by parts and by employing

g(s,u)=u, O<u<_s

=s, s<_u<_l (20)

to yield

L 2 t

¢b(s,P)= (-T)p_(p)_p IR(r) Io g(S,u)cos_(u,r)du I (21)

Thus defining O(s,r) by

I

0(s,r) = _o g(s,u)cos¢(u,r)du (22)

'results in

• (s,p) = (L2/[)p_q (p) _p [R (r)O(s,r) ] (23)

Next, the Laplace convolution theorem is employed to invert
Eq. (23) to yield

(L')f, (24)
_o(s,t) = \'7/Jo J(t-r) Or

Upon a final integration by parts we have

_(s,t) = ( L'_-_) [J(O)R(t)O(s,t) + f: J' (t-r)R(r)O(s,r)dr]

(25)

where ( )' denotes differentiation with respect to the argu-

ment of the function. Note that Eq. (25) is the viscoelastic

solution reported in Ref. 2.

Bounding solutions are developed in the following man-

ner. Provided, after quasistatic appfication, the load R(r) is

held constant at some value P, it is reasonable to presume
that the angle of deflection _(s,r) will be a nondecreasing

function in time. Thus, for the interval 0 _"_<r-< t,

,p(s,O")_< ¢ (s,r) _<¢(s,t) (26)

Consequently, restricting our attention to a range of deflec-

tion such that 0-<¢<r/2 we may concIude that

cos¢ (s,0 <") > cos¢ (s, r) > cos,p (s, t) (27)

Thus, from Eqs. (22) and (27) we have

O(s,O ÷ ) _ 0 (s, r) >_O (s,t) (28)

Through the use of Eq. (28), we can bound the convolution
integral of Eq. (25) as follows:

PO(s,O" ) IoJ' (t-r)dr> foJ'{t-r)R(r)O(s,r)dr

> PO(s,t) [" J' ( t- r)dr (29)
JO

L 2

(19)

Integration of the first and third integrals in Eq. (29) and

substitution of these results into Eq. (25) yield, after

rearrangement,

/ PL 2 \

c,o(s,t)=J(t) _---f-)O(s,t) (30a)



NOVEMBER1986 GEOMETRICALLYNONLINEARVISCOELASTICPROBLEMS 1847

i

m

i

t

018

..,a

0.14

0.10

o

z) At midspan.

0.5

0.4

I i I I

l I 1 _L____
10 20

TIME. HR

I I I I

s_

11.3

L I I I 1
0 l0 20

b) At loaded end. TIME, HR

Fig. 3 Vertical deflection of the end-loaded cantilever beam.

,, -- t ....

,-X

"_i t)

Fig. 4 Geometry o| the eccentrically loaded cantilever column.

Fig. 5 Ideal three-elemenl "limited" creep model.

approximated by using Newton-Coates formulas; a fixed-

step trapezoidal rule is used for the time convolution. All

computations are performed on a CDC Cyber 180/855

located at the Georgia Institute of Technology.

Figures 2 and 3 compare the results obtained with the

bounding formulation to the exact solution for the loading

ease reported in Refs. 2 and 3. The form of the creep com-

pliance for this example is

J(t)/J(O)= 1 + 7.6× 10-4t + 1.12(1 -e - °-°sst) (34)

-_SZ

w

m

m

m

'"-'< r'<'> ] }+.,(,.t):x(o t--7-) to(,.,)+[ j"7_ -1 0(s.0 +)

(30b)

Note that Eq. (30a) is the quasielastic solution proposed by
Schapery.

Bounding of the deflection of the beam can be readily ac-

complished by using Eqs (30). Nondimensionalization and

then integration of Eq. (12c) yield

Y(S't) = f_ sin¢(u,t)du (31)
L

Thus, since v_z6(s,t)<¢(s,t)<¢u_(s,t), we note that, for
0<¢,<_x12

sin,#lb (S,t) <_sin¢(s,t) _<sincub (s,t) (32)

which yield, upon substitution into Eq. (31)

Y_b (s't) = I_ sin¢_ (u,t)du (33a)L

Y,b(S,t) f_L = sine,t, (u,t)du (33b)

Numerical solutions of Eqs. (25), (30), and (33) are

generated in a manner similar to Ref. 2. Picard's method of
successive substitutions is employed to numerically solve the

integral equations. Eqs. (25) and (30). Spatial integrals are

Figure 2 demonstrates that the bounding solutions provide

a reasonably narrow band at both the midspan and the

loaded end locations. For this particular case, the lower

bound tends to more closely approximate the actual solution.

For both the upper and lower bounds, the discrepancy be-

tween the approximate result and the exact solution tends to

increase with elapsed time and distance from the clamped
end.

Figure 3 compares the calculated vertical deflections at

midspan and at the loaded end. It can be noted that the

descrepancies between the bounding and exact solutions
behave in the same manner as described above. In terms of

absolute accuracy, after 24 h, the upper-bound end deflec-
tion exceeds the exact result by approximately 3.307o. The

lower bound, at the same point and time, is only 1.2°70 less

than the exact deflection. Using a 0.1 h fixed-length time

step, the exact solution required 15.6s of CPU time to com-

pute. Calculated for the same number of time intervals, each

of the bounding solutions required only 4.1 CPU s. Note,

however, that the accuracy of the bounding solutions is in-

dependent of the length of the time step. Thus, identical

bounding solution results can be obtained with, for example,

a 1.0 h time step. Using this larger time step, the computa-
tion time for each of the bounding solutions was reduced to

only 0.5 CPU s. Accurate results could not be obtained from

the exact solution using a time step this large due to errors in

approximating the convolution integrals.

Eccentricall) Loaded Cantilever Column

Although formally similar to the prior example, this prob-

lem is of interest because the eccentric loading generates ad-
ditive nonlinear boundary terms in the general solution. The

presence of these terms substantially influence_ the accuracy
of the predictions of the system regponse.
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Fig. 6 End deflection of the eccentrically loaded cantilever column
for the three-element model.

A quasielastic solution of this problem was recently
presented by Vinogradov? Included with the analysis were

numerical results for two ideal constitutive models, using

two eccentricity ratios and a wide range of applied loads.

Subsequently, Vinogradov and Wijeweera 5 and Wijeweera 6

published comparisons of results obtained using the

quasielastic approximation of Reg. 4 to experimental data

from tests conducted on PTFE G-700 columns. The loading

and eccentricity ratios employed in those tests were,

however, restricted to relatively narrow ranges in value.

Bounding solutions for the problem are developed in a

similar manner to the prior example. The column is assumed

to be inextensional, linearly viscoelastic, and loaded quasi-

statically. Its geometry in the deformed configuration is il-

lustrated in Fig. 4. Note that the applied load remains

parallel to the x axis.

For this geometry, the moment at any position s' is given

by

M(s',r) =R(r) [di(r) + acosa (r) -y(s',r) ] (35)

Substitution of Eq. (35) into Eq. (10), differentiation with

respect to s', use of Eqs. (12a) and (12c) followed by non-
dimensionalization yield

=- I'--J('-")[a[e (s.,-)11dr

(36)

We note that the boundary conditions for this problem are

_, (0, t) = 0 (37a)

M(l,t) = aR (t) cos_ (l,t) (37b)

where, for a rigid "extension,"

a(t) = _(l,t) (37c)

Through the use of Eqs. (10) and (12a), the second boundary

condition [Eq. (37b)1 can, after nondimensionalization, be

expressed entirely in terms of ¢ by

as (

Assuming that the column is undeformed for r<0 and

that following the procedure detailed in Eqs. (15-25) again

yield a solution of the form of Eq. (25) except that, in this

case,

,(s,,) = ( q_-_-_ff)cos_( |,,) + f _ g(£,l,l)s_rl_(u,,)dtl (3_)

Note that the nonlinear boundary term cos_ (l,t) appears in-

side the convolution integral as well as in the integrated term

of Eq. (25).

Under a constant load P it is again plausible to assume

that _(s,r) Will be a nondecreasing function with respect to

r. Thus, in addition to Eqs. (26) and (27), we note

sin_o(s,O+ )< sin_o(s,r) < sin_o(s,t) (39)

Because of the differences in bounding behavior in Eqs. (27)

and (39), the convolution integral of the general solution

[Eq. (25)] is split into two separate integrals that are bounded

individually.

Substitution of the appropriate bounding functions from

Eqs. (27) and (39) into Eq. (38) and substitution of these

results into Eq. (25) yield, after integration and rearrange-
ment of terms

¢tb(S,t) = J(0) \--'7-- / g(s,u)sin,p(u,t)du

[ J(t)] so
+/. z'Y(_.t/Z) c°s¢(l't)

I"s(t) )duI (40a)

c.n (s,t) = J(O) ( P-_ 2) I ( s-_)cos¢( l,t)

[ J(t) 1]/sa\ ++ LJ-X_-- _,-Z')c°s+(l'°)

[ "(t) l('g(s,u)sin¢(u,t)du 1+ L-7_-J :o

ORIGINAL PAGE

OF POOR QUALll

(40b)

Numerical evaluation of Eqs. (40), as well as the exact solu-

tion given by Eqs. (25) and (38), is accomplished in the same
manner as the prior example. Figures 6 and 7 present the
results of these computations for the ideal "limited creep"

model used in Refs. 5 and 6 and illustrated on Fig. 5. For

this particular constitutive model, the creep compliance J(t)

has the form

J(t) =1+ [ Ez \ - t" (41a)J(O-"-_ \ C,I /
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where we have employed

J(O) = I/E 2 (41b)
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Fig. 8 Reported and normalized experimental data for the six-
element model.

I,t =Etlnl (41c)

Figure 6 presents results for EzlE_ =0.5 and a/L=O.O1

for a range of load ratios. In this figure, and all succeeding

ones, we employ a viscoelastic "Euler" load PE to non-

dimensionalize the loading, where

x21

Pe= 4J(O)L 2 (42)

For comparison, this figure also includes results from a

"standard" quasielastic solution _oq, of the general form

/ PL2\

Wq, (s,_) = L---i--)J(t)O(s,t) (43)

where the various functions on the right-hand side are as

previously defined.

It can be observed that the quasielastic solution is almost

identical to the upper-bound result for the load ratios of 0.67

and 0.75. At the load ratio of 0.50, the upper-bound and

__ quasielastic results differ only in the fourth decimal
place.Thus, only the upper-bound result has been indicated

in the figure for this load case.

Although the upper-bound and quasielastic results com-
p2re favorabl_ with each other, neither of them r,:r the

lower-bound solution provides a good approximation to the

exact result except at the lowest load ratio, 0.50. Thus,

reliance on only a quasielastic type of solution, especially for
the higher loading instances, could lead to erroneous results.

With only a quasielastic solution, it is impossible to deter-
mine its accuracy without calculating the exact solution.

Thus, it is not possible to assess the magnitude or character

(i.e., conservative or nonconservative) of the potential er-
rors. In contrast, the amount of separation between the

bounding solutions provides such a capability. The narrow

separation evident at a load ratio of 0.50 might well provide
sufficiently accurate results without resorting to the more in-
volved analysis. The significant differences between the

bounds at the higher loads, instead, indicate that exact solu-

tions must be determined for accurate results.

Figure 7 provides results for the same ratio of modulii, but

for a load eccentricity of 0.10. Again, at the lowest load

ratio (0.30), the quasielastic and upper-bound solutions are

virtually indistinguishable and only the upper bound is
indicated.

Comparison of Figs. 6 and 7 illustrates that the increase in

load eccentricity generates several pronounced effects. The

quasielastic solution, in general, tends to provide a more ac-
curate prediction of behavior at all load levels for the higher

load eccentricity. Additionall._, the larger eccentricity tends
to decrease the spread between the upper- and lower-bound
a_proximation_. Thi_ i_ no:, t_'-,we_.er. 3 commie% I, ,-':=:r=.!
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Fig. 9 End deflection of the eecentri¢ally loaded cantilever column
for the six-element model.

trend, since at the load ratio of 0.50 the bounding is much

more narrow for the lower eccentricity case.
Since some experimental results also are available, _'n a

comparison with these data is worthwhile. Figure 8 provides
reported as well as "normalized" data for two load-

eccentricity cases. The normalized curves are generated by

adding the relative displacement of a specimen from its

time=0* (i.e., 10 or 20 s deflection) to the average 0*

displacement of that test group. In this way, the significant
differences between the observed results in a test group due
solely to the differences in "instantaneous" deflection could
be eliminated. As indicated in the figure, this virtually
eliminates the substantial differences between observed

results,
Based on data from four point bending tests the specimen

•material (PTFE G-700) was modeled _ as a six-element
"unlimited creep" type of material. The numerical form for
the creep compliance is given by

J(t)/J(O) = I + 3.7 x I0 -4/,+ 0.17(1 - e -9.02t)

+ O. 13(1 - e- o,o4, ) (44)

Figure 9 presents the comparison of the exact quasielastic,
upper- and lower-bound results to the normalized test data
of Fig. 8. Note that, while there is an apparent significant
difference between observed and calculated results for the

higher-load case, differences in the 0* deflection account for

most of it. The average reported "instantaneous" non-
dimensional deflection was 0.0633, whereas the calculated

value was only 0.0580. If the various results were to be nor-
malized to eliminate this difference, the test data band would

completely overlap the calculated results. However, using

such a procedure for the lower-load case would decrease the
correlation indicated on Fig. 8. Since the observed "instan-

taneous" deflection was only 0.00504, normalizing the data
to the calculated deflection of 0.00530 _;ould move the band

of test data so that it .would be somewhat above the

calculated results. The main conclusion to be drawn is that,

qualitatively, the calculated results agree with the observed

data. Exact comparability is, however, hindered by the large

differences in initial displacement evident in the test data.

Conclusions

A methodology is presented wherein problems of isother-

mal linear viscoelastic behavior, formulated using nonlinear
kinematic measures of deformation, may be analyzed
through the use of a bounding procedure. The bounding

solutions developed by this technique are similar in form to

that of a time-dependent elasticity problem. As such,

numerical solutions may be generated without requiring the

computation of convolution integrals of the entire history of
deformation. In one of the examples considered, it is shown

that this results in an increase in computational efficiency

more than 30 times greater by comparison to the more tradi-
tional approach.

It is also demonstrated that the bounding procedure pro-
vides reasonably accurate results for a variety of loading
conditions. In those cases where narrow bounds cannot be

established, it is shown that a standard type quasieIastic ap-
proach is not necessarily more reliable. The clear implication
of the wide bounds is that the more involved traditional ap-

proach must be employed if highly accurate results are
required.

As presented, the bounding technique can be directly
employed for problems where the governing functions may

be characterized as either nonincreasing or nondecreasing
functions with respect to time. However, the range of ap-
plicability potentially can be expanded to include some forms
of multimodal functions. In general, this would require that

these functions be capable of being characterized, at least in

a piecewise manner, as a sequence of unimodal segments.
Similar to the procedure that was employed in the second ex-

ample, each of these segments would then be bounded in-
dividually. The degree of accuracy that might be obtained

using such a procedure, however, requires further study.
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Solution Methods for One-Dimensional Viscoelastic Problems
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A recently developed differential methodology for solution of one-dimensional nonlinear viscoelastic problems is
presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential
formulation are compared to results obtained from a previously published integral solution technique. It is shoran that

the results from these distinct methodologies exhibit a high degree of correlation with one another. A discussion of
the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included.
Finally, the influences of some "higher-order" effects, such as straining along the centroldal axis, are discussed.
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g(s,u)
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Lp
M,N
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g, s

t,

U, W

X, y

Yq
Eo

Nomenclature

•- load eccentricity
= area of cross section

= Young's modulus

= Green's function for the spatial integrals
= moment of inertia

= creep compliance

- length of cantilever
= Laplace transform operator

= moment and force resultant, respectively
= applied load
= Euler load

= dimensional and nondimensional distance along

the beam, respectively
= time

= axial and transverse displacement, respectively

= spatial coordinates
= Newton-Cotes quadrature weights
= centroidal axis strain

= curvature

=angle of rotation -.

Introduction

A NUMBER of solution methods are available for vis-
coelastic problcms in which the behavior of the material

may be adequately characterized by a linear viscoelastic opera-

tor and where the deformation of the body is sufficiently small
to allow the use of a linear kinematic formulation, t'2 Com-

monly, integral transform methods, separation of variables.

series expansions, and other techniques provide methodologies

wherein exact closed-form solutions may be derived. When

exact solutions cannot be obtained, approximate techniques,
such as one proposed by Schapery) provide an alternate

approach.

The inclusion of nonlinear effects in the analysis significantly

reduces the mathematical tractability of the problem. These

nonlinear influences can be induced by geometric factors re-
suiting.from the magnitude of the deformation or from gross

rotation of cross sections. Alternatively, nonlinearities in the

material response may need to be included to provide an accu-
rate model for material behavior.

Independent of whether the nonlinearities are produced by

geometric or material effects, they invariably result in non-
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linear governing equations. Thus, the solution methods men-

tioned here, applicable to linear problems, generally cannot be

employed. Approximation methods, 4 however, have been de-

veloped and can be employed to analyze such problems.

One of these methods is to idealize the problem in a manner

that inherently simplifies the governing relations. An example
of this technique was the utilization of an ideal "I" cross-

sectional geometry ha early column creep-buckling studies. _

With this approximation, the equilibrium equations were re-

duced to simpler forms, involving the "average" stresses in the

ideal flanges, where closed-form solution was possible.

Another approach used extensively was to restrict consider-

ations to only certain types of time-dependent material behav-
ior. 6 In some cases, this involved retaining only secondary

creep behavior in the material model. Alternatively, and espe-

cially when "powei'-Iaw" type constitutive laws were used, the

constants or exponents of the law were restricted to special

-values for which closed-form solution was possible. 7 In a few

cases, this approximation, as welkas the aforementioned geo-

metric simplification technique, were employed simultaneously
to enable solution. A survey of many of these techniques has

been provided by Hofl'. s-

A more general technique for the solution of geometrically

nonlinear viscoelastic problems was first presented by Rogers
and Lee. '_ In this method, the solution was formulated as an

integral equation that was nonlinear in both time and space.

From this, numerical results were obtained using computa-

tional techniques. A recent paper by the authors _° provided a

method for bounding the solution of problems formulated in
this manner.

Generally, both the exact and bounding technique can be

employed for problems wherein the response of the material

may be adequately characterized using a linear viscoelastic
model, but where the resulting time-dependent deformation of

the body warrants the use of a nonlinear kinematic formula-

tion. Problems involving nonlinear viscoelastic material behav-
ior, however, currently cannot be addressed with this method.

Unfortunately, many materials, and especially the elevated

temperature behavior of most metals, require a nonlinear con-
stitutive characterization. Consequently, an alternate solution

procedure for one-dimensional problems involving nonlinear

kinematic and nonlinear material effects has been developed.
This method, hereinafter referred to as the differential t'ormula-

lion, is based on the direct solution of the nonlinear differential

equations of equilibrium.

Similar to the integral method, the differential formulation is

predicated on the assumption of a quasistatic response. This,

effectively, "'dccouplcs'" the temporal and spatial dependence
of the problem in a manner that allows the general solution to
be treated as the sequential combination of solutions to a non-

linear "boundary value" problem and a nonlinear "initial

value" problem. The first of these, the equations characterizing

the time-dependent states of quasistatic equilibrium, are solved
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through the use of a Newton-type method. :_ Tile "'initial
value" problem, resulting from the nonlinear constitutive law,
governs the manner by which the body progresses from one

state of quasistatic equilibrium to the succeeding one. Numeri-

cal solutions fi_r this parl of the problem are generated using a

fourth-order Runge-Kutta method. This general method has

recently been employed to examine the nonlinear thermovis-
coclastic behavior of thin structural members, t2

In addition to presenting the differential formulation tech-

nique, a comparison of results obtained using the integral and

differential formulations is provided. The problem of an eccen-
trically loaded viscoelastic cantilever beam-column is employed

as the vehicle through which the comparison is performed.

Because of the inherent limitation of the integral technique,

this comparison is restricted to the consideration of a linear

viscoelastic material. The specific case considered is that of the

three-parameter viscoelastic solid, which has been examined in
a number of studies.*°'t_'*4 The results obtained from these two

distinct methods of solution exhibit a surprisingly high degree
of correlation with one another, thereby establishing a high

level of confidence in the validity of the methods. Finally, the

differential formulation is employed to examine the influences

of some "higher-order" effects in the class of problems under
consideration.

Integral Formulation

The Rogers and Lee formulation method, 9 hereafter referred
to as the integral solution technique, is focused toward formu-

lating the solution to the nonlinear viscoelastic problem in

terms of an integral equation. The general method was evolved

through analogy to the associated geometrically nonlinear elas-

tic problem. Only a synopsis of the method is presented here

since complete developments for the technique are available in
the literature. 9'm

In the integral formulation, the time dependence of the mate-

rial behavior is expressed in the form of a Volterra-type inte-

gral operator. This operator acts upon. a second integral

expression, which characterizes the quasistatic equilibrium of

the body. For application to beam-column-type problems, it is
assumed that the beam-column is thin and composed of a lin-

early viscoelastic material. In addition, referenced line exten-
sional strains are assumed to be negligibly small. Thus, the

_coordinate _, denoting distance along the undeformed length,

can be employed to specify position in both the initial and
deformed contigurations. For convenience, a nondimensional

coordinate s is defined by dividing g by the length of the beam
1. Figure 1 illustrates a typical geometry used with this method.

For the sample problem, the eccentric load is assumed to-be

applied quasistatically, and its direction does not vary with
time.

Assuming a linear distribution of the strains through the

depth, bending, thus occurring within an Euler-Bernoulli con-

text, results in a moment-curvature relationship of the form

where x(g,t) denotes the curvature and M(g,r) the bending mo-
ment at location J. Idcnotes the moment ofinertia of the beam

and J(t) the creep compliance of the material. For the sample
problem, the moment at position g would be given by

M(J,'t) = P(r)[_(r) + a cosa(r) - y(g,r)] (2)

where P(z) denotes the load applied at eccentricity _. Since

d¢(g,t)
_(Lt) = _ (3)

tgg

then, for quiescent initial condition, the Laplace transforma-
" tion,of Eq. (1) yields

AND G. J. SIMITSES AIAA JOURNAL

as = pJ(p)Lp[M(s,t)] (4)

where J(p) and O(s,p) denote the transforms of J(t) and ¢(s,t),

respectively, and where p represents the Laplace variable. Note

that the nondimensional coordinate s has also been employed

in the preceding expression.

Assuming that the Laplace variable apears only alge-
braically, Eq. (4) has the form of a type of"ordinary" differen-

tial equation. Consequently, integrating with respect to s yields

$

0

Note that the order of integration and Laplace transformation

has been interchanged. This is a direct result of the assumption

of inextensionality; consequently, s and t represent indepen-
dent variables.

Equation (5) reveals a very interesting aspect of this formu-

lation. Namely, the underlying structure of the equation is

completely determined by the manner in which the moment

depends on the deformation. For example, even if the moment

depends upon the spatial coordinate s, provided it is indepen-
dent of the deformation, then the basic equation is, in princi-

ple, integrable to a closed-form solution. This solution is, in
fact, the usual result obtained from a linear analysis.

Illustrating how the equation structure changes when the
moment is related to the deflection is best demonstrated

through analogy with the associated elastic problem. Note that
the governing relation for the associated elastic problem can be

obtained by replacing the creep compliance by the elastic corn-

pl!ance and eliminating the Laplace operator. This yields

0,O) - ¢_(0) = _ M(,)dr (6)

Note ihat the governing equation for the associated elastic

problem takes on the form of a linear Fredholm equation when

the moment depends linearly upon the deflection, In contrast,
a nonlinear Fredholm format is obtained for cases where the

moment is nonlinearly dependent upon deformation. In a sim-

ilar manner, the viscoelastic problem takes on a linear "quasi-

Fredholm'" form when the moment is linearly dependent upon
the deformation. A nonlinear "quasi-Fredholm" format occurs

when, as in the sample problem, the relationship bet_veen mo-
ment and deflection is nonlinear.

• To complete the formulation for the sample problem, Eqs.
(2) and (3) are substituted into Eq. (1). Following differentia-

tion with respect to s, the kinematic relations

ax(_,t)_ = cos_(_,t)
ag

ay(Lt) (7)
= sin¢(._,t)

a_

' t

i

Fig. I Beam-.columngeometry for the integral method.
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arc employed to express all dcformation-rcktted quantities in

terms of 0. For the sample problem..the boundary conditions
are

¢(0.0 = 0

M(Lt) = aP(t) cos_p(l.t) (8)

where -tit)= ¢(l.t) for a "rigid" extension. Thus, using the

methodology detailed in Ref. 9 and assuming quiescent initial

conditions yields the solution

12

_b(s.t) = (_) IJ(O)P(t)O(s,t) + _o+J'(t - t)P(QO($,z) dtl

(9)

where

(,.) jo'O(s,t) = cost#(I,t) + g(s,r) sinC(r,t) dr

and +

g(s,r)=r, O<r<s

• =s, s_r<l

(10)

(11)

Note that the prime in Eq. (9) denotes differentiation with
respect to the argument of the function.

Equation (9) represents a time convolution of a nonlinear

spatial integral equation, Eq. (10). Numerical solutions are

obtained using Picard's method of successive substitutions. _5

Newton-Coates formulas are used to approximate the spatial

integral, and a fixed-step trapezoidal rule is employed for the
time convolution. The general format of the algebraic expres-
sions obtained in this manner is

= a" T.

n--I ] 1+ _ J'(t. - Q®(s,.O +2J'(t.)®(s,, 0.) (12)
j-2 ,.

with

+,°®(s. 0 = -'7" cos¢( I,Q + As "/krk sin4'(rk.Q
k 1

Note that in Eq. (12), -the number of terms in the summation

increases linearly with each succeeding time step, whereas the

number of terms in the_ummations represented by Eq. (13) is
fixed• This increasing summation requirement in Eq. (12) has a

significant impact on the relative speed of the integral formula-

tion computations.

Differential Formulation

As previously noted, the differential formulation technique is

based bn the direct solution of the governingdifferential equa-
tions. Similar to the integral formulation, the differential for-

mulation is also based on the assumption of quasistatie

behavior. From this, the equations governing the successive

states of quasistatie equilibrium may be expressed in terms of
deformation functions and force and moment resultants. Con-

sequently, these equations have the generaLformat of a nonlin-
ear boundary value problem. A Newton-type method, first

suggested by Thurston, tt is employed to derive solutions for
this part of the problem.

On the other hand, the constitutive law, expressing the time

dependence of the material response, governs the evolution of

the force and moment resultants as the system progresses be-
tween successive states of quasistatic equilibrium. This repre-

sents a form of initial value problem with the values of the
constitutive variables, such as accumulated viscoelastic strain,

providing the initial conditions• For a nonlinear constitutive

law. numerical procedures such as a Runge-Kutta or Euler

method may be employed to predict the growth of these vari-

ables. Note that, for a "beam-theory" type formulation such as
this, a spatial integration of the viscoelastic strain across the

cross section is also required to enable evaluation of the force
and moment resultants.

Similar to the integral formulation, the differential formula-
tion for the sample problem is also based on the assumption

that bending of the beam occurs in accordance with the Euler-

Bernoulli hypotheses. Employing the functions u(s,t) and w(s.t)

to denote, respectively, the axial and transverse deflection of
the centroidal axis. then the extensional strain at the centroidal

axis Eo is approximately given by

du I (_w'x 2

Note that the term _du/ds): has been neglected as small in

comparison to &t/ds. If, in addition, both the strain at the

eentroidal axis and ?u/ds are small in comparison to I, then it

is simple to show that

&k OwO2u d2w
,gs Os Os: t]s: - (15)

where 4' denotes the angle of rotation of the cross section•

Thus, the assumption of a linear variation of strain across the

cross section yields

04,
Qt _ _0 + t/"_-_'$ (16)

Employing the principal of virtual work followed by integra-

tion by parts and subsequent algebraic manipulation yields the
equilibrium equations

a¢f [a cos*(/') -i- w(s) - w(l)]l (17a)= -Ftl + )

M = F[a cos4,(/) + w(s) - w(l)] (17b)

where g and M, the force and moment resultants, respec-

tively, are defined as

f
N = _ otldA (18a)

,/

A

= I rtatld'A (18b)M

,4 --

Based on an additive decomposition for the total strain,

e, = E,. +_,., where G and e, represent the elastic and creep
strain components, respectively, yields, after substitution into

Eqs. ( i 7) and (18),

EAto=-F{l+_-_[acos4,(/)+w(s)-w(l)]}+N, (19a)

06

E1 -_s = F [a cos6(1) + w (s) - w (/)] + Me (19b)

where the "pseudoresultants" N e and M c are defined by

Nc = I E%dA _ (20a)

.4

M_ = .t' ,_E_,d,4 (20b)

.,4
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Numerical soh, tion for Eqs. (19) arc computed using a

modi/icd Newton-type method suggested by Tht, rston) _ To
illustrate this method, consider a nonlinear diffei'ential term of

the l\',rm du'"dw" where du and dw arc differentials of the

functions u and w and m and n represent integer exponents.

Assuming that close trial solutions _;'and t; are a,,ailablc, which
differ from the exact solution by the small quantities Aw and At_
so that u = z7+ Au and w = _i"+ Aw. then

du"'dw" = d_"'d*i"" 4" mdfi .... t d*i""d(Au)

+ ndtV"dd""-_d(Aw) +fOT.(i')O[Au.Aw] (21)

where f( ) denotes a nonlinear function of _ and ,i', and O[]

indicates terms of order AuAw and higher. If the trial solution
is indeed close to the true solution, then the corrections Au and

Aw will be small. Consequently, the quadratic and higher-order
terms in the corrections will be negligible in comparison to the

linear terms and therefore may be neglected. Thus, the left-

hand side of Eq. (21) may be closely approximated by the

linearized form consisting of just t.he first three terms on the

right-hand side.
With this procedure, the original nonlinear differential equa-

tion is approximated by a linearized form. Employing standard
finite-difference formulas, the linearized form is then converted

into a system of algebraic equations where the unknowns are
the corrections to the trial solution at the nodes of the finite-

difference mesh. These relations are solved for these correc-

tions, the trial solution is adjusted, and the process repeated

until convergence is obtained.

Application of this procedure to the geometry of the sample

problem, e.g., yields the finite-difference expressions

O_'i Off'i + E10_;'i

0_, _- E1 1 + 2AS'_s2) Awi_ t + (2EI - As-'P)Aw,-

El(1 - O:ili\2As "_'s-') Awi÷ t + As:PAw,.
%

+2AsPa tan_(Aw,_ t - w,,+ t)_

= , I °a_] (22a)_ [M; + M, - E -_-]

and

M; ( 0¢¢I - 2AsEA )&u i_ - 23,I 7 -_s art,- \ Os t

-M; )au,.\ Os + 2&sEA

-[2AsEA Oi'v, "/- 02u'+ !)

+ 2AsPtan_'] Awi-t + \"_ss(O_iAs:P + 2Mr) ,Xw,

+ 2AsP tan_i],Awi, l --_s-a_iAs2PAw,,

a_
-2 -_s ASPa tan_,(Aw,,_ t -- Aw,,. ,)

- [ 1=As2 -Pcos_i+N¢,-EI o-M_'_-J

where

•, M_- = P(a cos_,, + _ -- _¢n) -

(22b)

(23)

In these equations, the subscript i is used to represent interior
nodes, and the subscript n is employed to indicate the node at
the loaded end of the beam-column. Values obtained from the

trim solution have been denoted by the placement of a tilde

over the applicable term.

Numerical solution of Eqs. (22) requires evaluation of the

"pseud.oresultants" N¢ and M_ at each interior point of the
finite-difference mesh. This is accomplished by evaluating the

accumulated creep strain at a select number of points across
the cross section at each of the axial nodes. A three-point

Newton-Cotes quadrature formula is then employed repeti-

tively to approximate the area integrals. For the sample calcu-

lations reported herein, evaluation of the accumulated creep

strain at each of these points is accomplished through the use

of a fourth-order Runge-Kutta integration routine to integrate
the constitutive law.

Example Problem

The specific example considered is that of a 30.5 cm ( 12 in.)

long beam-column. For simplicity, a square cross section of
dimension 12.7 mm (0.5 in.) has been assumed. It is also as-
sumed that the beam-column is fabricated from a material that

can be modeled as a three-parameter viscoelastic solid. The

creep compliance for this model, illustrated in Fig. 2, is given

by

J(t)/:1(O) = 1 + [E2/Et]e-u,o (24)

where _0 = vt]Et. For the sample computations, the numerical

values for the parameters have been selected so that r o = I.

Thus, integer values for time t are equal to multiples of the time
constant of the material. The elastic modulus of the material,

E,, is assumed to be 196 GPa (28.5 x 106 psi), the room tem-

perature modulus.of Hastelloy X.

A five-point grid in the transverse direction is used in com-
puting the "pseudoresultants" in the differential formulation.

The points are equidistantly spaced, with the-first and last
located at the extreme fibers and the central point positioned
on the centroidal axis.

Since the governing equations of both the differential and

integral formulations are only satisfied at a discrete number of

points over the length of the beam-column, the first question
addressed is the sensitivity of the results to the number of

points used in the approximation. Table 1, for example, com-

pares initial elastic deflections determined using the differential

formulation as the number of a_proximating points is doubled

from 10 to 20 and then doubled again to 40. Table 2 provides

a similar comparison for the integral formulation.
It can be seen that there is very little change in the computed

transverse deflection as the number of approximating points is

increased. In both cases, the initial elastic solution for the 10-
element model is within 1.0% of the 40-element model results.

Additionally, the relative magnitude of the errors between the
10- and 40- as well as the 20- and 40-element models of the

differential formulation are very similar to those exhibited by

the equivalent comparison of integral solution models. These

specific results, of course, apply for an eccentricity ratio of 0.05

and an applied load of P/P, _- 0.75, where the Euler load P, is

based on a perfect geometry and use of the instantaneous com-
pliance of the material J(0). However, they, like other results

reported herein, illustrate the general trends observed at other
load levels and load eccentricities.

Thus, both formulations exhibit a similar low sensitivity to

the number of elements used in the analysis. Concurrently, the
results also indicate that a 10-element model can be used with

either method without generating significant errors in the anal-
ysis. It should be noted that all of the differential formulation

results presented in the first table are based on the use of an

exact expression for evaluating the angle of rotation. The influ-

ence of employing an approximate formula for calculating the
angle of rotation is discussed in a later section. Also note that
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at this load and eccentricity, the initial end rotation of the

beam-cohmm exceeds 17 deg. Of course, smaller rotations are

exhibited at the lower loads and lower eccentricities. Higher

loads and larger eccentricities, conversely, produce greater
rotations,

A direct comparison between the results generated by the

two formulations is provided in Tables 3 and 4. Again, the

comparison is based on the 0.05 eccentricity ratio, which pro-

duces reasonably large angles of rotation. Angles of rotation of
the cross section, determined from the integral technique, are
included in the tabulated data.

It should be noted that the differential solution results pre-

sented in Table 3 are based on the use of an exact expression

for evaluation of sine. Differential solution results obtained

using an approximate expression for sin_b are provided in Table

4. The common approximation 4_ _sin-l(-Ow/_3s) is em-

ployed to calculate the angle of rotation for this second set of

results. Except for this particular difference, these two differen-
tial formulations are otherwise completely identical.

These results indicate that little difference exists between the

initial deformation predicted using the integral formulation

and that predicted by either differential solution. The differ-

ences between the integral and differential methods are typi-

cally an order of magnitude lower than the differences observed

for either technique when the number of elements was quad-

rupled. A potentially high-order effect may be indicated by the
relative increase in differences at the highest loading examined.

However, despite this increase, the magnitude of the differences

is still so small as to be completely inconsequential with regard

to engineering computations.

The data also indicate that no significant differences in the

differential formulation (predicted transverse deflections) oc-

cur as a result of using an approximate formula for evaluation
ofsinqS. Even for an end rotation angle of 17 deg, the exact and

approximate results differ only in the third or fourth decimal

place. It should be noted that this high level of correlation

continues to exist for even greater angles of rotation.

The probable reason for this hig h correlation is that, under
compressive loading, the derivative of the axial displacement is

negative. With reference to Eq. (14), this implies that the cen-
troidal axis strain is numerically equal to the difference be-

tween the two components since the squared term (slope of the

transverse deflection) is always positive. Thus, the magnitude

of the centroidal axis strain must be less than the magnitude of

either of its components. Because the difference between the

ex ct.q.ELi!_d approximate expressions for sinq5 is related to the

_/I + 2,% in the denominator of the exact expression, reducing
the magnitude of the centroidal strain must inherently improve

the accuracy of an approximation where this term is neglected.

This is best illustrated by the data of Table 5. Here, the

integral solution is compared to an approximate differential
solution in which the effect of the centroidal axis strain terms

are suppressed. This suppression is accomplished by eliminat-

ing all the (Ow/e3s) z terms from the governing equations. In

addition, the EA modulus-area product is artificially increased

Fig. 2

/h

1,,1

Ideal three-element "limited" creep model.

through multiplication by a factor of 1000. This second change
reduces the magnitude of the axial deflections u by approxi-

mately the same factor. The overall intent of this effort was to
create a differential model that would simulate the axial "inex-

Table 1 Differential elastic solution vs number of nodes for
P[P. = 0.75 and all = 0.05

Transverse deflection (cm) for various numbers of elements

Number of elements

s = ._/1 4O 20 % difP

0.0 0.000000 0.000000 --
0. l 0.062669 0.062751 0.13
0.2 0.249400 0.249700 0.12
0.3 0.556448 0.557103 0.12
0.4 0.977725 0.978855 0.12
0.5 " 1.504980 1.506695 0.1l
0.6 2.128050 2.130438 0.11
0.7 2.835125 2.838262 0.11
0.8 3.613038 3.616978 0.11
0.9 4.447532 4.452313 0. I 1
i.0 5.323528 5.329169 0. I I

S ==._[I 40 10 % diff

0.0 0.000000 0.000000 --
0.1 0.062669 0.063015 0.55
0.2 0.249400 0.250858 0.59
0.3 0.556448 0.559534 0.56
0.4 0.977725 0.983259 0.57
0.5 1.504980 1.5132[8 0.55
0.6 2.128050 2.139785 0.55
0.7 2.835125 2.850330 0.54
0.8 3.613038 3.632429 0.54
0.9 4.447532 4.470819 0.52
1.0 - 5.323528 5.351315 0.52

"% differences arc with respect to 40-clement solution,

Table 2 Integral elastic solution vs number of nodes for
PIP. = 0.75 and a]l = 0.05

Transverse deflection (cm) for various numbers of elements

Number of elements

S -- _// 40 20 % dip

0.0 0.000000 0.00(3000 --
0.1 0.062525 0.062616 0.15
0.2 0.248836 0.249238 0.16
0.3 0.555208 0.555981 0.14
0.4 0.975561 0.977115 0.16
0.5 I..501648 1,503906 01.5
0.6 2.123316 2;126658 - 0.16
0.7 2.828762 2.833050 O.[ 5
0.8 3.604837 3.610412 0.16
0.9 4.437309 4.443969 0.15
i.0 5.311148 5.319194 0.15

= _jl 40 10 % diff

0.0 0.000000 0.000000 --
0. I 0.062525 0.062944 0.67
0.2 0.248836 0.250833 0.80

- 0.3 0.555208 0.559112 0.70
0.4 0.975561 0.981829 0.6-I
0.5 1.501648 !.512425 0.72
0.6 2.123316 2,137987 _._0.69
0.7 2.828762 2.847177 0.65
0.8 3.604837 3.629746 0.69
0.9 4.437309 4.466392 0.66
1.0 5.311148 5.348440 0.70

"% differences are with respect to 40-element solution.
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Table 3 Comparison" of integral and differentiaP elastic solutions for
various loads with all = 0.05

Transverse deflection (cm) from various solutions

Angle,
s = LI Integral Differential % dif'ff deg

P/e, = 0.25
0.0 0.000000 0.000000 -- 0.00
o. t 0.006642 0.006645 0.04 0.25
0.2 0.026543 0.026538 -0.02 0.50
0.3 0.059548 0.059550 0.00 0.74
0.4 0.105461 0.105489 0.03 0.98
O.5 0.164059 O. l 64056 0.00 1.22
0.6 0.234887 0.234907 0.01 1.44

0.7 0.317525 0.317579 0.02 1.66
0.8 0.411579 0.411592 0.00 1.87
0.9 0.516270 0.516329 0.01 2.07
1.0 0.631223 0.63l 182 -0.01 2.25

p/t,. = o.5o
0.0 0.000000 0.000000 m 0.00
0.[ 0.021039 0.021044 0.02 0.79
0.2 0_083962 - 0.083932 -0.04 1.57
0.3 0.187808 0.187828 0.01 2.33
0.4 0.331320 0.331511 0.06 3.07
0.5 0.513103 0.513077 0.00 3.76
0.6 0.730283 0.730400 0.02 4.40
0.7 0.980300 0.980618 0.03 5.0 I
0.8 - 1.260747 !.260810 0.01 5.52
0.9 !.566974 !.567304 0.02 6.01
1.0 !.896801 1.896542 -0.01 6.38

p/p,= o.75
0.0 0.000000 0.000000 -- 0.00
O.I 0.062944 0.063015 0.II 2.37
0.2 0.250833 0.250858 0.01 4.68
0.3 0.5S9112 0.559534 0.08 6.91
0.4 0.981829 0.983259 O.15 9.03
0.5 1.512425 1.513218 0.05 10.97
0.6 2.137987 2.139785 0.08 12.68
0.7 2.847177 2.850330 0.11 14.23
0.8 3.629746 3.632429 .0.07 15.41
0.9 4.466392 4.470819 0. I0 16.44

1.0 5.348440 5,.351315 0.05 17.04

'Comparisons based on results from 10-element models, bDifferential solution

employing an exact sinq_ formula. _'/, differences are with respect to integral

solution.

Table 4 Comparison" of integral and differential b elastic solutions for
various loads with all = 0.5

Transverse deflection (cm) from various solutions

Angle,
s -. g/l Integral Differential % di_ deg

P/P, = o.25
0.0 0.000000 0.000000 -- 0.00
0.1 0.006642 0.006645 0.00 0.25
0.2 0.026543 0.026538 -0.02 0.50
0.3 0.059548 0.059550 0.00 0.74
0.4 0.105461 0.105489 0.03 0.98
0.5 0.164059 0.164056 0.00 1.22
0.6 0.234887 0.234907 0.01 1.44
0.7 0.317525 0.317579 0.02 1.66
0.8 0.411579 0.411592 0.00 1.87
0.9 0.516270 0.516329 0.01 Z07

1.0 0.631223 0.631182 --0.01 2.25

e/p, = aso
o.o o.oooooo o.oooooo -- o.oo
0.1 0.021039 0.021046 0.04 0.79
0.2 0.083962 0.083932 -0.04 1.57
0.3 0.187808 0.187830 0.01 2.33

0.4 0.331320 " 0.331511 0.06 3.07
0.5 0.513103 0.513080 0.00 3.76
0.6 0.730283 0.730402 0.02 4.40
0.7 0.980300 0.098620 0.03 5.01

0.8 1.260747 1.260813 0.01 5.52
0.9 1.566974 I;567307 0.02 6.01
1.0 1.896801 1.896547 - 0.01 6.38

?le, = o 7s
0.0 0.000000 0.000000 -- 0.00
O.I 0.062944 0.063017 0.12 2.37
0.2 0.250833 0.250868 0.01 4.68
0.3 0.559 [ 12 0.559559 0.08 6.91
0.4 0.9g1829 0.983305 0.15 9.03
0.5 1.512425 1.513286 0.06 10.97
0.6 2.137987 2.13988"I 0.09 12.68
0.7 2.847177 2.850459 0.12 14.23
0.8 3.629746 3.632594 0.08 15.41

0.9 4.466392 4.471020 0. I0 16.44
1.0 5.348440 5.351554 0.06 17.04

"Comparisons based on results from 10-element models, bDifferenlial solution

employing an approximate sin_ formula, ¢% differences are with respecl to

integral solution.

tensionality" of the integral model. These changes did produce
a differential model with an effectively inextensional centroidal

" axis. It was anticipated that this would further improve the
correlation between the differential and integral results. Unfor-

tunately; such was not the case.

When the angle of rotation is very small, such as one that
results from a low level of loading and minimal eccentricity, all

formulations provide virtually identical predictions. Increases

in the angle of rotation, however, due to increases in loading or

eccentricity or both, cause the modified differential predictions

to diverge from those of the others. This divergence between
results increased with both load magnitude and eccentricity.

This behavior is attributed to the manner in which the

modified numerical model handles the end deflection of the

beam-column. In the modified model, the end of the beam-

column effectively moves only in the vertical direction (see Fig.

1). The standard differential model as well as the integral

model, however, include influences generated when the end can
move both vertically and horizontally. Thus, for any given
vertical deflection, the horizontal movement that occurs in the

integral and unmodified differential models acts to increase the

angle of rotation. This, in turn, reduces the magnitude of the

applied moment [see Eq- (23)]. Therefore, at any particular
given vertical deflection, the moment loading in the standard
formulation model is lower than that in the modified version.

Effectively, the moment decreases a greater amount in the un-

modified model than it does in the modified model at equiva-

lent amounts of transverse deflection. This, in turn, implies that
the beam-column of the unmodified model would not deflect as
much as the one of the modified model would. _-

The implication is that the numerical modeling of the influ-

ence of deformation on loading is an important factor. This

conclusion is consistent with the observations made concerning

how the structure of the integral equation, Eq. (5), changes as

a result of the interactiofi between loading and deflection. Ad-
ditionally, it should be noted that neglecting centroidal axis

strain in the differential technique does not necessarily provide

an effect equivalent to the assumption of inextensionality in the

integral techniques. This is attributed to the fact that the elim-
ination of the centroidal axis strain in the differential formula-

tion can be accomplished only at the expense of reducing the

actual coupling between deformation and loading.
For both methods, the initial elastic deflection of the beam-

column provides the initial condition for the viscoelastic defor-

mation. Consequently, any differences in the initial elastic

responses predicted by the two methods will only be accentu-
ated during the subsequent period of time-dependent behavior.

The corfiparisons discussed demonstrate that the two methods

provide virtually identical predictions of initial elastic deforma-

tion. Table 6 provides a typical comparison for the integral and
the differential (exact sin_b) method predictions for the vis-

coelastic deflection of the beam-column over a period of two
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Tthle 5 Comparison" of intt,o..ral and modified dilTerentialb elastic
solutions for _arious loads _ith a/I = 0.05

Transverse dcl'lcction (era) from various solution

Angle,
,_= ._,4 Integral Differential % di_ dug

Pip..= 0.2_
0.0 0.000000 0.000000 -- 0.00
0. I 0,006642 0.006645 0.00 0.25
0.2 0.026545 0.026533 --0.04 0.50
0.3 0.05954S 0.059548 0.00 0.74
0.4 0.105461 0.105479 0.02 . 0.98
0.5 0.164059 0.164048 --0.0I 1.22
0.6 0.234887 0.234894 0.00 1.44
0.7 0.317525 0.317576 0.02 i.66
0.8 0.411579 0.411589 0.00 1.87
0.9 0.516270 0.516349 0.02 2.07
1.0 0.631223 0.631210 0.00 2.25

P/P,= am
o.o o.oooooo %000000 -- o.oo
0.1 0.021039 0.021067 0.13 0.79
0.2 0.083962 0.084005 0.05 1.57
0.3 0.187808 0.188041 0.12 2.33
0.4 0.331320 0.331889 0.17 3.07
0.5 0.513103 0.513776 0.13 3.76
0.6 0.730283 0.731457 0.16 4.40
0.7 0.980300 0.982246 0.20 5.01
0.8 1.260747 i.263051 0.18 5.52
0.9 1.566974 1.570406 0.22 6.01
1.0 1.896801 1.900517 0.20 6.38

P/P, = _ 75
o.o o.oooooo o.oooooo -- o.oo
0.1 0.062944 0.064879 3.07 2.37
0.2 0.250833 0.258313 2.98 4.68
0.3 _559112 0.576725 3.15 6.91
0.4 0.981829 0.014219 3.30 9.03
0.5 1.512425 1.562702 3.32 10.97
0.6 2.137987 2.212025 3.46 12.68
0.7 2.847177 2.950167 3.62 14.23
0.8 3.629746 3.763475 3.68 15.41
0.9 4.466392 4.636892 3.82 16.44
1.0 5.348440 5.554259 3.85 17.04

"Comparisons based on results from 10-element models, btnfluences ofccntroidal

axis strain terms suppressed. _% differences are with respect to integral solution.

Table 6 Comparison" of integral and differential s viscoelastic solutions
to two time constants;P/P, =0.50 and a[l=O.05

Trans'verse deflection (cm) for various solutions

Angle,
s = 3/l Integral Differential % difV dug

at time = 0
0.0 0.000000 0.0000(30 -- 0.00
0.1 0.021039 0.021044 0.02 0.79
0.2 0.083962 0.083932 -0.04 1.57
0.3 0.187808 0.187828 0.01 2.33
0.4 0.331320 0.331511 0.06 3.07
0.5 0.513103 0.513077 0.02 3.76
0.6 0.730283 0.730400 0.02 4.40
0.7 0.980300 0.980618 0.03 5.01
0.8 1.260747 1.260810 0.01 5.52
0.9 1.566974 1.567304 0.02 6.01
1.0 1.89680[ 1.896542 -0.01 6.38

at time fit o
0.0 0.000000 0.000000 _ 0.00
0.1 0.038311 0.038326 _0.04 1.44
0.2 0.152784 0.152725 -0.04 2.86
0.3 0.341170 0.341234 0.02 4.22
0.4 0.600532 0.600994 0.08 5.54
0.5 0.927608 0.927590 0.00 6.76
0.6 1.315809 1.316129 0.02 7.86
0.7 - 1.759290 1.760083 - 0.05 8.87
0.8 2.252647 2.252896 0.01 9.70
0.9 2.785532 2.786395 0.03 10.44
i.0 3.353191 3.352810 -0.01 10.95

at time = 2to
0.0 0.000000 0.000000 -- 0.00
0.I 0.048583 0.048611 0.06 1.83
0.2 0.193685 0.193629 -0.03 3.62
0.3 0.432178 0.432313 0.03 5.34
0.4 0.759958 0.760689 0.09 7.00
0.5 1.172517 1.172627 " 0.01 8.52
0.6 " 1.660764 1.661396 0.04 9.88
0.7 2.216699 2.218045 0.06 11.13
0.8 2.83297I 2.833680 0.03 12.[2
0.9 3.495617 3.497252 0.05 12.99
1.0 4.198267 4.198371 0.00 13.55

aCompansonsbased on results from 10-element models, bDifferential solution
employing an exact sine formula. =% differences are with respec_ to in:egral
solution.

material time constants. The viscoelastic model employed for

these computations is the three-parameter "limited" creep ma-

terial illustrated in Fig. 2. As noted previously, the material

parameters were selected so that the material time constant ro

equals unity. The toad and eccentricity ratios for this particular
set of results were P/B, = 0.50 and all - 0.05, respectively.

As demonstrated by this data, the high correlation between

the integral and differential method predictions for the initial

elastic deflections carries over directly to the viscoelastic analy-

sis. The time-dependent deflection predicted by one technique
is virtually indistinguishable from that predicted by the other.

This indicates that the differential formulation methodology

employed to account for the influence of viscoelastic strain

provides the equivalent effect as the hereditary integral compo-

nent of the integral formulation. As such, this lends high confi-

dence to the differential solution methodology.
It should be noted that these particular numerical results are

typical of other results obtained for higher, as well as lower,

loads and eccentricities. Generally, the correlation between the

solutions was not influenced by the magnitude of the loading or
the amount or load eccentricity.

A minor, high.order-type influence was, however, noted. As

the angle of rotation became very large, on the order of 45 dug,

a small but distinct divergence in predicted deflections was
observed. Typiea{ly, the rate of increase in deflection predicted

by the differential formulation would begin to slightly exceed

that predicted by the integral method. Normally, this could be

observed as time approached two material time constant for

the highest loads (P/P, approaching unity) and with extremely
large eccentricities. Under some conditions, it also could be
observed as time exceeded four to five material time constants.

These observed differences between the two sets of predic-

tions were still very small. Generally, they were on the order of

0.10%. Thus, from a pi'actical viewpoint, they are totally negli-
gible with respect to normal accuracy requirements for engi-

neering computation. It is mentioned here only to indicate that,
under conditions such as these, the accumulation of numerical

errors may begin to influence the results. A comparison be-

tween the integral and the approximate sin_b differential solu-
tion results was not included because the differences between

the exact and approximate differential solution results are

again so small as to be negligible.
The final item meriting discussion is the length of the time

increment used in each of the formulations. Unlike the prior

results, some differences do exist between the maximum allow-

able time-step increments for the integral and differential for-
mulations. Additionally, the allowable time-step increment for

the integral formulation exhibits a higher dependence on the
actual angle of rotation than does the differential formulation.

In general, a relatively small time step increment must be

used with the integral solution methodology. For example, the
results previously presented typically employed a 0.01-time-



1134 J.M. STUBSTADANDG.J.SIMITSES AIAAJOURNAL

step increment. As the length of this time step is increased, the
accuracy of the solution decreases and tends to underpredict
the deflection. This convergence "'from below" is not surprising
since the convolution integral is approximated as the sum of a
finite number of terms.

in contrast, much larger time-step increments were used with
the differential formulation. This is principally attributed to the

high accuracy provided by the Runge-Kutta integration rou-
tine. Most of the results provided were developed using a 0.10
time step. The use of even larger time steps was also examined.
It was found that time increments four to five times greater

than 0.10 could be employed without significant changes in the
calculated results. Additionally, the allowable length of this

time-step increment tended to be rather insensitive to the angle
of rotation. The allowable time step for the integral formula-

tion, on the other hand, exhibited a high level of sensitivity to

the angle of rotation. Larger angles of rotation required signifi-

cantly shorter time steps for accurate results to be obtained.
These factors combine in a rather interesting manner with

regard to which method of analysis is computationally more

efficient. Typically, for the analysis of short periods of vis_
coelastic deformation, the integral solution method was two to
three times faster than the differential method. This is at-

tributed to two factors. The first is the comparitively slow

Runge-Kutta integration procedure used in the differential for-

mulation. For a short period of viscoelastic deformation, the

calculation of the convolution integral of the integral formula-

tion, requiring simple summation of a limited number of terms,

can be performed much more rapidly.
The second factor is that the fixed-point iteration scheme of

the integral formulation, although requiring more iterations
than the Newton method, is also performed more rapidly since

it is simply an algebraic operation. The Newton method, in

contrast, requires inversion of the matrix, premultiplying the
vector of trial function corrections, and then numerical evalua-

tion through solution of the system of equations. Even for just
a 10-element beam, this process is slow in comparison to the

fixed-point iteration.
However, as the length of the period of viscoelastic deforma-

tion increases, this relative speed relationship reverses. Eventu-

ally, the differential formulation begins to generate solutions

more rapidly than the integtTat method. In the example problem

previously described, this generally occurred approximately be-
tween the second and third time constants. The reason for this

change is directly related to the computation of the convolu-
tion integral of the integral technique. As time increases, the
number of terms in the.summation increases linearly. This, in

turn, increases the number of algebraic operations that must be

performed and therefore linearly increases the time need for
- each complete computation. In contrast, the speed of the

Runge-Kutta integration routine is virtually independent of

time. Thus, the continually increasing computational effort re-

quired in the integral technique eventually exceeds that need

for the differential technique. This reverses the relative speed

relationship.

Conclusions

Based on the results reported herein and elsewhere, t2 it is

concluded that the differential formulation procedure pre-

sented can be employed for the analysis of quasistatic non-
linear one-dimensional viscoelastic problems. This conclusion

is based directly on the high level of correlation between results

developed using this formulation technique to those obtained

with the previously published integral method for solution of

such problems. Additionally, it is observed that both of these

methods exhibit exceptionally similar accuracy characteristics

with regard to the number of elements employed in the approx-
imation. For both. a a'elatively low number of elements can be

used without engendering any significant errors.
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CREEP ANALYSIS OF BEAMS AND ARCHES BASED ON A

HEREDITARY VISCO-ELASTIC-PLASTIC CONSTITUTIVE LAW

J. M. Stubstad and G. J. Simitses
Georgia Institute of Technology

Atlanta, Georgia

ABSTRAC_r

An analytic study of planar beams and arches subjected to signifi-

cant thermal cycling from ambient temperatures up to 8006C is presented.

In the study, a recently developed unified nonlinear hereditary type of vis-

coelastoplasti¢ constitutive law is employed to characterize the time- and

temperature-dependent properties of a typical aerospace alloy, Hastelloy X.

The results from this work demonstrate that a strong interaction

exists between the hackstress variable of this particular constitutive law

.and the time-dependent stress distribution produced by the geometry of

the deformation. Effectively= this interaction tends to control, in a highly

nonlinear manner, the creep-rstchctting response of the beam and the arch.

An unerpeeted consequence of this is that temperature gradients in the

thickness direction, s factor normally neglected in most studies, tends to

exert an important influence on the response during thermal cycling.

NOMENCLATURE

a

A

b

eij

d

E

he, E=, E=

go, G.

h
&

E

Kt. Ks

r61thru nr

load eccentricity

cross sectional area ofbeam or arch

width of beam or arch

inelastic strain tensor

deformation vector for points on the centroidal axis

Young's Modulus

zero, first and second moments of the elastic modulus. •

across a cross section, respectively

base vectors for undeformed and deformed configurations

metric components of the undeformed and aeformed

configurations

depth of beam or arch

,,+_.
drag stress

constitutive law constants

constitutive law constants

constitutive law exponents

M, N

M=, N=

M#, Ns

P

P, V

q(O, r(t)
r, R

t, n, k

T, N, K

t

M., 19

O

e,,

e,f_

.X, /z

o-t.f

&
fhj

moment and force resultants

creep strain moment and force pseudo-resultants

thermal strain moment and force pseudo-resultants

pressure load

axial and transverse force resultants

constitutive law functions

position vecto_ in undefornied and deformed configurations

coordinates along length and depth directions

components of the deviator stress tensor

triad of unit vectors for the undeformed configuration

_riad of unit vectors for the deformed configuration

time

axial and transverse displacement of the centroidal axis

coefficient of thermal expansion ""

centroidal axis strain

strain tensor component -"

change in temperature

initial curvature of the arch

Lam/_ constants

stress tensor component

angle of rotation of cross section

backstress

INTRODUCTION

It is well known that metal alloys can undergo transitions in behavior

as temperature increases. Commonly, for loading substantially below yiehl,

the elastic response observed at room temperature generally gives way to a

time-dependent viscoelastic response at somewhat elevated temperatures.

Further increaSes in temperature, however, introduces the potential for sud-

den "rapid" or plastic type deformation• Such transitions can signitlcantly- "

shorten the useful life of the structural element and generate the possibil-

ity of a sudden unanticipated failure. Consequently, for many years the

aerospace and nuclear power industries, where elevated temperature oper-

ating environments abound, have had a continuing :.nterest in predicting

the behavior of metallic gtructurai elements snbiected to such conditions.

"" Early investigators [1-3] generally focused their attention on the he-

havlor of structural components subjected to conditions of constant load at
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constant uniform elevated temperatures. Many of these studies employed

simplined analyses to improve mathematical tractability. Additionally, "eXo

pe/imentally based eqOation of state" type constitutive laws were often used

to express the nonlinear elevated temperature time-dependent behavior of

the material. A summary of many of methods developed and key findings

obtained is provided by Boil" [4].

These efforts answered many of the questions regarding elevated tem-

perature creep buckling. However, they were not able to satisfactorily

describe the creep ratchetting behavior resulting from thermal cycling at

elevated temperatures. Consequently, it was not until Miller [5] and Ed-

mends and Beer [6], both of whom considered nuclear pressure vessels, that

this particular form of behavior was specifically addressed. Subsequently,

Brae [T,g] investigated basic factors which determine when this type of re-

sponse could occur• These studies led to experimental investigations and

other analytic studies to explore various aspects of tile phenomena. The

works of Conway el. al. [9], Corum [10,11] and Mukhejecee, Kumar and

Chang t12] provide a representative sampling of these efforts.

However, the greatest concentration of effort has been directed to-

ward improving the capability to predict the elevated temperature behav-

ior of metals. The contributions of Hart [1-%14], Pointer and Leckic [15],

Pugh [16-18], Krempl [19], and Walker and Krempl {20], to name of few,

provide a dramatic illustration of the intensity of these efforts to develop ad-

vanced constitutive models. Yet, as pointed out by Corum and Sartory [21],

an equation of state approach to constitutive modeling is still generally used

in design situations. However, as Pugh [18] has noted, the n_wer types of

unified constitutive laws, where inelastic strain is not divided into distinct

creep and plasticity components, can provide an alternate approach.

Consequently, one of the sims of this study is to examine the use of a

typical unit%d constitutive model in an analysis of the behavior of structural

elements subject to thermal cycling from an elevated ambient temperature.

The specific law which was selected is one developed by Walker [22] to

model the time- and temperature-dependent behavior of Hastelloy X, an

alloy routinely used in the aeropsace industry.

The study results indicate that, with this particular constitutive law

and material, an implicit interaction exists between the stress in the mem-

ber and the backstress of'the constitutive law. This interaction strongly

influences the ultimate response. This result is significant for two reasons.

First, because saturation of the backstress of this constitutive law can lead

to plastic response, it indicates that the ultimate reliability ofnny predicted

results rests strongly upon the accuracy with which the backstress growth

law parameters have been determined.

Additionally, this aspect produces the rather interesting result that,

due to the strong temperature dependence of the material constants of

the law, temperature variations in the thickness direction greatly influence

predicted response. This is significant for any analysis since the influences

of such temperature variations are generally neglected.

MATHEMATICAL FORMULATION

To focus principally upon the interaction between the response of

the structural element and the prediction of thermal dependence of the.ma-

terial, the problem is formulated within the context of a simplified beam

theory. Consequently, it is assumed that the beam or arch deforms in accor-

dance with the Eulcr-Bernoulli hypotheses. As such, cross sectional planes

normal to the centroidal axis in the undeformed geometry are assumed

to remain plane and normal in the deformed state. Similarly, extensional

straining in the thickness and depth directions are neglected. Thus, based

on the geometry illustrated in Fig. I, the position vectors r and R, where

r --- r, + r/at and R = r, + d + rjN (1)

are employed to locate a typical point on an arbitrary cross section in the

undeformed and deformed configurations, respectively. Note that 9 repre-

sents the coordinate in the normal direction. Also, lower case and .pper

case symbols are employed to denote quantities referred to the undeformed

and deformed configurations, respectively.

Base vectors for the reference and current state, go and Go, respec-

tively, are defined by

ar OR

So =_ and G.=_ where ,,=,,n (2)
Consequently, the deformation vector which translates a point from the

undeformed to deformed configurations, denoted as d, can be expressed as

d + y/N = (u + _ sin _)t + (w + _ cos _)n (3)

where a and w represent axial and transverse displacement functions for

points on the eentroidal axis, respectively. Substitution of Eqns. (1) and

(3) into (2), followed by di_erentiation and subsequent employment of the

Fernet-Serret formulae and the strain definition,

1 G
3,°_=_( ,,_-g.¢); where go¢=go.g_, G.#=G. oG_ (4)

yields the strain expressions

v,, _{0 0_ • O_' - ,,u - ,k sin¢) cos¢} (sb)

and

1"

_.. = _{sinS¢ + cos'C- 1} = o (Sc)

In these, ]t : _ + 8c_/Os, where _ denotes the initial constant curvature of

the arch and _ represents the angle of rotation of the cross section.

From the Euler-Bernoulli hypotheses, the shear stlains must vanish.

Consequently, from this requirement Eqn. ($b) yields .

(x + _" + ,_)E

Therefore, employing the definition

-- ._ _ _./ eeformed

Fig'=e 1. Geometry of De._ot'mation.
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and Eqn. (6) it is relatively easy to show that

8w - xn) I + _+_w
siu_ = -('_; and cos¢ =

Thus, expanding Eqn. (So) and employing Eqns. (7) and (8) yields

(8)

_,..=+.+,7{,,v'i+2+.-,,+ l+,/rgE. }+,l'{,_++g,,T, ' (9)

From the above it is clear that e. represents the strain induced along the

eentroidal axis. Since, for a thin arch or beam, the last term of Eqn. (9)

should be small in comparison to the others, it may be neglected. Similarly,

additional simplifications may be obtained for the case where the centroldai

axis strain is sufficiently small so that it may be neglected in comparison to

one. Based on these assumptions, Eqn. (g) simplifies to the standard form

•y. _ _.+ ,]_-_ 00)

Equilibrium equations are obtained through application of the Prin-

ciple of Virtual Work. Stress resultants, N and M, are defined such that

N=/,4crdA and M=£o'_dA (11)

Note that

86vt
6¢ = _ + ,_6us (12a)

6_ = _ - ,,o,,L

where 6_b and i_e denote the incremental c_anges in rotation and centroidal

axis strain resulting from the deformed configuration axial and transverse

displacement changes, 5_t and 6v2, respectively.

Consequently, from the Principle of Virtual Work,

6w.., = [M6_+ N6,_+ q6,,s]_+ -p'6,_sd, (ta)

Expressing the first term on the right hand side in terms of an integral over

the length and then combining that result with the work term yields

ft s ,gbl .... 884 ON_ ..88¢t 8Q_ _ 86vs .. 1

(14)
Thercgose, employing Eqns. (12) and noting that terms multiplying the

virtual displacements 6ca, 6vr and 6# must vanish identically yields, after

eliminating the shear resultant, the equilibrium equations

I.s-@M=p' and 8S l,_=o OS)

with the associated boundary conditions at i = 0, ! ""

N =N" or 6ul =0

OM
=-q" or 6_=0 (1_)

and

M= M" or 6_=0

where N', Q', and M" denote the axial, shear and moment resultants ap-

plied at the ends of the arch, respectively.

Expressions for the force and moment resultants, N and M, respec-

tively, are obtained /'tom the constitutive law. A unified hereditary visco-

elastic-plastic law developed by Walker [22} to characterize the time and

temperature dependence of Hastelloy g is employed. The selection of

v, N_C _,__ .

M

Fig.re 2 Ex:er=al Forces Lad .Mome=ts Acting on the Arch.

Walker's functional theory, a highly generalized representation for a three

parameter viscoelastic solid, was based on three considerations. First,

from a strictly practical point of view, a substantial body of experimental

work {22-24] had been performed to establish the temperature dependence

of the constitutive law parameters for a wide range of temperatures. These

efforts included &validation which examined the predictive ¢apability of the

law through a comparison of nnalytical sad experimental results for time

variable thermo-mechanical load cycling of uniaxial specimens.

A second factor which favdred selection of the Walker law was that it

is able to reproduce forms of classical behavior as limiting cases. For exam-

ple, saturation of the drag stress produces an effect equivalent to isotropic

hardening of a material. Similarly, saturation of the backstress produces an

effect equivalent to kinematic hardening. Finally, the associated laws which

govern the evolution of the state variables provide for the opportunity to

include effects related to both dynamic and static thermal recovery

The final reason for selection of the Walker law is that it can be ex-

pressed in both differential and integral formats. For this particular study,

the differential format of the law was found to be the most convenient.

However, it was hoped that the availability of an integral format wou]d

provide, at a future date, the opportunity to extend some prior work in-

volving kinematic bounding of nonlinear integral formulations I25] to also

include some form of constitutive bounding

The general integral form of Walker's functional theory has been

provided in Appendix A. That appendix also contains a derivation of the

differential form from the integral format. It should be noted that, in the

modeling of the elevated temperature behavior of Hastelloy X, additional

simplifications in the form of the law were possible. These simplifications

resulted from the fact that, for llastelloy X, a number of material constants

ate zero over the entire temperature range.

Due to these simplifications, the differential format of Walker's func-

tional theory, for one-dimensional loading of Hastelloy X, has the-form

lq .rabs(_ - f_tt)) '_6 = sign(_- ,_;[ _- (ITs)

(XTb)

(l_c)

K = K_ (l'td)

and

d : _,zab.(_.) + ,_.(ahs{n.})'-' (_e)

Finally, since the time rate of change of temperature is relatively

low in the sample problems, all terms where O appeared were .assumed

to be insignificant and therefore neglected. Note that this provides some

minor simplifications to Eqn. (17b) and makes the reference backstress,

fl_t, independent of the time rate of change in temperature.

The law is based on an additive decompostion of the stra;n into

elastic, thermal and inelastic components, e,, O and e,, respectively. Thus,
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(Is)
e. 4" *l_';m = e. + es

+ fl

For the state of one-dimenslonal loading considered, this yields

. =E(c. + ,_ - e, - e.) (19)

Therefore, integrating this expression over the cross section and emp[oying

tile force resultant definition, Eqn. (Ill, yields

85
N = E._.+ Ex_ - N,- N. (20)

where Eo and EL denote the zero and first integrals of the elastic modulus

over the cross section and Ns and N, represent _pseudo-resultant _ type

quantities defined as

_' :.L _,,d.4 and No: L _,.,.4 01)

Note that the first integral of the elastic modulus over the cross section, Et ,

does not necessarily vanish since the elastic modulus is a function of the

temperature, which is not necessarily constant across a cross section, An

interseting aspect of this is that it induces a form of bending-stretching

coupling {see also Eqn. (22)} similar to that of a laminated composite

material. Finally, it should be noted that, although the quantities defined

by Eqn. (21) have the units of a force resultant, these definitions are merely

employed to simplify suhsequent expressions.

Multiplying Eqn. (19) by the coordinate, ¢/, integrating over the cross

section and employing the moment resultant definition, gqn. (]_2), yields

M = Et_.+Es_;- Me-M, (22)

where Es denotes the second integral of the elastic modulus over the cross

section and tl_e "pseudo-moment" resultants are defined by

Ms = L _Ec. dA and M, = L _E_,dA (23)

Consequently, substituting Eqns. (20) and (22) into Eqns. (15) yie]ds the

general governing relations

kEoe.+_E,-_,-E,_ -E,-_-T,_= p 0 (24)

and

B. 8r$ B

(_o+kE,)_" + (E,+i,_,)_-.,= _(s. + N,)+ l,(M.+ .,) (2s)

In the development of these relationships, it is assumed that the moments of

the elastic modulus, _o, Ex and Es, are constant with respect to the axial

coordinate. This implies that these quantities are independent of stress or

strain and that the temperature is constant along the length direction.

Equations (24) and (25) represent a pair of interrelated spatially de-

pendent nonlinear differential relationships which describe the deformation

of the beam or arch. In their present form, they are stated in terms of the
strain along the centroidal axis and the rotation of the cross section. These

two quantities, in turn, are interrelated through the axial and transverse

displacements of the centroidal axis. Substitution of the appropriate ex-

pressions for the centroidal axis strain and cross section rotation ultimately

results in s set of equations, one of third order and tire other of fourth

order, in terms of these displacement functions•

Due to the significant nonlinearity of these equations a numerical

method of solution was selected. The particular method employed is an

adaptation of Newton's method for the solution of nonlinear algebraic equa-

tions [26], The basic approach is an tentative procedure where a "close" trial

solution is directed towards the actual solution. Note that this method nei-

ther guarantees convergence to a solution nor that s solution is unique.

The basic methodology is to expand a nonlinear differential term

such U dXmdY_* where dX and dY represent differentials of the functions

X and Y and m and n represent integer exponents, into the sum and prod-

ucts of trial solutions _ and _r and corrections of the form &X and AY.

Consequently, substituting X = X + AX and Y = _r + AY yields,

dXmdY TM = dX m d_ TM + mdX m-t dg"d(AX)

where /(_,_r)O[&X, AY] represents a nonlinear function of X and _r of

second and higher order terms in AX and AY_ Provided the trial solution

is close to the true solution, these higher order terms should be small in

"comparison to the linear terms and thus may be neglected. Consequently,

the nonlinear teem may be dosely approximated by the linear form

dX'dY" _ dX _'d'Y" + mdX ''-Id'_"d(AX) + ndX "_d'Y"-'d(AY) (27)

With this technique, the nonlinear differential equations are approxi-

mated in terms of linear differential equations for the corrections to assumed

trial functions. These coupled differential equations are then converted to

a set of coupled algebraic relations through the use of central difference

formulae to approximate the derivative terms for the corrections tn the as-

sumed deflections. Appendix B provides, for example, the general _nite

difference expressions developed for the initially circular arch.

A matrix iteration procedure is employed to refine an assumed trial

solution. Each sucessive set of corrdctions is used to update the trial solu-

tion until convergence is obtained. Tests for such convergence included the

consideration of the magnitude of each set of corrections as well as the over-

all accuracy for -which each of the individual nodal equations was solved.

In this regard it is noted that an equivalent degree of coupling did not exist

between the in-plane and transverse equations of equilibrium. Typically,

the accuracy of the solution of the transverse equation of equilibrium was

stl'ongly dependent upon the transverse deflection but only weakly influ-

enced by the in-plane displacement. Conversely, the in-plane equation of

equilibrium was strongly dependent upon both the transverse and in-plane

deflections. Consequently, the rate of convergence of the transverse nodal

eqfiations was much more rapid than that of the in-plane ones.

In contrast to the treatment of the equations of cquilib¢ium as a

typical boundary value problem, the solution for the changes to the moment

and force resultants between successive states of quasi-static equilibrium is

handled as an initial value problem. As such, a fourth order Rnnge-Kutta

integration routine w_ employed to integrate the constitutive law at a

prcselected set of points across the cross section for each axial node used in

the finite difference mesh. In this process, it was assumed that the change

in actual stress at each of these points could be approximated as a linear

function of time over a given, reasonably short, time interval.

Once the "tri_l stresses" at the end of the _ime interve.l had been ap-

proximated, a Newton-Cotes quadrature formula was used to numerically

approximate the force and moment resultants. These were then employed

to compute the deflections for this new state of quasi-static equilibrium.

From the deflection solution, a revised stress field could be calculated and

compared with that which had been employed to integrate the constitutive

law. The process was repeated if more than nominal differences existed

between the assumed and computed changes in stress. For this, the linear

approximating fractions were adjusted based upon the compared stress dis-

tribution. Otherwise, the results were accepted and the analysis proceeded

on to the next time increment.

This procedure was found to work very well after the first few time

steps. Most of the computation effort was expended in the solution of the

"boundary value" part of the problem and not in the iteration for material

behavior. Principally, this was due to the fact that the rate of change in



actualstress was reasonably constant and was there{ore easy to estimate

between successive increments. This began to break down, however, when

the behavior of the material began to resemble a plastic response. Under

these conditions, the rate of change in actual stress would change rapidly

even over very short time intervals. Consequently, accurately forecasting

its rate of change was difficult. Thus, a greater number of iterations was

needed to close the numerical loop.

NUMERICAL RESULTS

The problems considered are an eccentrically loaded cantilever beam-

column and a simply supported pressure loaded shallow circular arch. In

both cases, the behavior of the structural element is examined for constant

loading at constant temperatures of 400, 600 and 800 "C and with sinu-

soidal variations nbout the temperatures of 400 and 600 "C. Simultaneous

variations in loading and temperature are not examined. However, the

potential influences of time-invariant temperature gradients in the depth

direction are examined for both constant and variable temperatures.

The beam-column considered is 30.48 cm long having a square cross

section of 1.27 cm depth and thickness. The eccentric load is applied 0.3048

cm below the centroidal axis yielding an eccentricity ratio of 0.01. The

direction of the load is assumed to remain constant. Twelve axial nodes

are used to model the beam-column. Additionally, a five point transverse

grid is employed at each axial node to approximate variations in stress

and strain across the cross section. One transverse grid point is located

st each extreme surface of the cross section and one is positioned on the

centroidal axis. TILe remaining two points are spaced equidistantly between

these three points. It should be noted that the results from this _twelve

axial node five grid" model compare favorably with results obtained using

greater numbers of a.xial nodes and transverse grid points.

The circular arch examined is a 8.59 dog. segment of a circle. Physi-

cally, the arc length of the arch is 22.86 cm with an initial radius of curvature

of 152.4 cm. For this relatively shallow arch, the rise of the centroidal axis

is approximately 0.43 cm. Unlike the beam-column, the arch has a rect-

angular cross section 0.51 cm in width and 0.38 cm in depth. The arch is

divided into fourteen segments for the numerical model. Again, a five point

transverse grid is established at the location of each axial node. Similar

to the beam-column, the results obtained with this "fourteeu segment five

transverse grid model = compare favorably with models employing greater

numbers of both. Illustrations of the geometry of the beam-column and

arch models are provided in Figs. 3 and 4.

Note that the dimensions selected for these sample problems are not

based upon the consideration of _typical" structural elements. Instead, the

dimensions are specifically chosen to accelerate the onset of time-dependent

behavior. The purpose of this is to minimise the length of the initial "sta-

ble" response period thereby reducing the overall magnitude of the eompn-

tational effort. In general, a "reaiistlcaily _ sifted structural element would

be appreciably stiffer and thus provide n much longer period of stable re-

sponse. However, other than this extension of the %table _ useful life, the

behavioral characteristics of such "realistic TM structural elements would be

highly similar to those of the example problems.

Finally, before proceeding with a detailed discussion of the numerical

results, some introductory remarks on the principal factors which determine

the form of the response merit consideration. Examinat!o.n of Eqn. (17a),

for instance, reveals that the inelastic strain rate is determined by the rela-

tive magnitudes of the actual stress and the backstress. The inelastic strain

rate changes whenever the rate of change in actual stress varies from the

rate of change of the backstress. In some situations, the rates of change

of actual stress and backstress tend to equilibrate yielding a relatively con-

stant difference. With this, the rate of inelastic straining tends to decrease

to a nearly constant value. This behavior might be characterised as initial

"primary creep TM transitioning to "secondary" or "steady" creep .

Figure 3 Eccentr_ca.Uy Loaded Cantilever Beam-Colu.m.n.

Figltre 4 Axia.1 Finite Difference Mesh for the Arch

In other cases, the rate of change in stress increases much more

rapidly than the backstress. Provided the magnitude of the difference

between them is not excessive, this produces a response akin to that of

accelerating or "tertiary" creep. The final possibility occurs when the dif-

ference between the actual stress and the backstress is very large. When

this happens, the exponential nature of Eqn. (17a) creates s situation where

inelastic strain rate tends to follow stress increment directly• Consequently,

in the limit, the law exhibits a behavior similar to incremental plasticity.

Thus, it should be evident that the crucial factors in the analysis

are those which determine how rapidly the actual stress and the backsttess

change with time. The most significant factors were found to be a geo-

metrical effect related to the bending moment and the growth law for the

backstress. Consequently, the overall response of the strnctural element

was determined by the relative interaction between these effects•

The geometric effect occurs in both the beam-column and the a_ch.

However, it is more easily visualifted with respect to the beam-column geom-

etry and therefore is described in that context. Essentially, the maximum

(in magnitude) stresses in the beam-column are determined by the too-

ment created by the end load. "l_ansverse deflection of the beam-column,

increasing the moment arm of the eccentric load, increases the magnitude

of these stresses. However, tending to counterbalance this effect is the end

rotation. Because the line of action of the load remains constant, end ro-

tation reduces the effective moment arm created by the eccentricity of the

load. Thus, this tends to reduce the magnitude of the end moment.

In a prior study [25] it was found that the relative significance of these

two influences was related to the load eccentricity and the time-dependent

characteristics of the material. For an eccentricity of the order employed

in this study, these two opposing effects can approximately connterbai-

ante one another only when beam deflection is relatively minor, l_eyond

this threshold, the transverse deflection effect predominates and the end

moment inherently increases. Therefore, the magnitudes of the maximum

stresses increase with deflection and thus also with time ......

In contrast, for slowly varying temperature changes, allowing the

terms of Eqn. (17b) to be neglected, the evolution of the backstress is
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governed by s relationship of the form

Feom Eqn. (l'/e), it should evident that G must be non-negative. Thus,

the magnitude of the talc or change of backstress depends upon the signs

and magnitudes of the inelastic strain rate and the difference between the

current and reference backstress. Because the actual stress is only indirectly

coupled to the backstress, through the deformation and the growth laws,

an increase in actual stress does not necessarily generate an equivalent

increase in backstress. Thus, the quantities in Eqn. (281 need not change

in equivalent or proportional amounts. As such, the rate of change of

baskstress may increase, decrease or remain relatively constant, thereby .

providing a wide variety of possible results.

The Beam - Column at Constant Temperature

The time-dependent deflection of the beam-column at constant tern-

perature provides the simplest demonstration of these effects. Figures S,

6 and 7 illustrate the time-dependent end deflec_'ion of the beam-column

under constant load at temperatures of 400, 600 and 800 "C, respectively,

The loading is expressed in terms of the ratio of the applied load to the

Euler load for a perfect configuration, P., where P. = x-aEl/4r. _. Note

that the Euler load is a function of temperature due to the temperature

dependence of the elastic modulus. Also note that the relative transverse

deflection (i.e.: the vertical axis) represents the ratio of the time-dependent

deflection to the initial elastic deflection. Thus, the results indicate the

relative increase in deflection produced by inelastic straining.

Except for the lowest loading at 400 "C, the 400 and 800 "C beam-

column results exhibit a short initial settling period followed by a virtually

linear increase in transverse deflection with time. This type of behavior is

synonomous with a response of primary creep transitioning to secondary

creep. Not unexpectedly, the higher Ioadings produce the greater rates of

increase. This infers that under these Conditions, the difference between

the actual stress and the buckstress must remain nearly constant with the

greater numerical differences occurring at the highest |oadings.

This hypothesis is confirmed by in Fig. 8, which illustrates the differ-

once between the maximum (in magniiude) actual stress and the backstress

for the 400 "C case.t Note that, due to the combination of bending and

axial loading, the maximum (in magnitude) actual stress occurs in the ex-

treme _bers adjacent to the wall. on the same side of the centroidal plane

as the applied end load.

Except for some slight initial variations, the difference between the

actual stress and backstress remains virtually constant. Thus, the right-

hand side of Eqn. (17a) effectively is constant. This yields a constant

relatively low rate of inelastic straining. •Since this low rate of inelastic

straining does not significantly alter the deflection of the beam-column,

significant changes in the actual stresses do not occur. Concurrently, the

low rata of inelastic straining yidds a low the rate of change in backstress.

Thus, the combination of these effects maintains an approximately constant

difference between actual stress and backstress.

In contrast, virtually all levels of loading at an 800 "C temperature

produce an accelerating rate of transverse deflection• Only the lowest load

produces a steady creep response; all higher Ioadings produce an accelerat-

ing rate of deformation. At the two highest load levels, the beam-column

deflects so rapidly it could be considered to have failed almost instanta-

neously. Of course, in comparing results between these different cases, the

significant differences in the time scales sho::ld be kept in mind. At the

lower temperatures, elapsed time can be expressed in hours. At the highest

temperature, elapsed time must be indicated in seconds.

Why the 800 "C results are so different from those at the lower

temperatures is directly attributable to the difference between the actual

t Results for the difference between the maximum (in magnitude) ac-

tual strex,* and the baekstress at a 600 "C temperatnre are not included

since they are virtually identical to those of Fig. 8 and are available else-

where [27]. The difference tends to remain relatively constant following a

short initial period with the greater differences at the higher loads.
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stress and the backstress, illustrated in Fig. 9. At the lowest load, the initial

relaxation is followed by a period of constant difference between the actual

stress and backstress. Thus, the increase in..sctua/stress from transverse

deflection is counterbalanced by the concurrent growth in the backstress.

Higher levels of loading alter the relative rates of growth. At higher loads,

the rate of increase in actual stress far exceeds that of the backstress, The

inelaStiC strain rate increases thus increasing the rate of deflection which,

in turn, further increases the rate of change of actual stress. Thus, the

process reinforces itself accelerating the approach to failure.

Before proceeding to the arch, a few words concerning the initial

relaxation are warranted. The "relaxation" process is a combination of

effects. First, the inelastic deformation tends to limit the rate of increase

in the stresses at the extreme fibers. To maintain equilibrium, load bearing

responsibility is translated toward the centroidal axis. Due to the relativelY

low initial magnitudes of these stresses, this normally does not prodstee any

significant inelastic staining near the centroidal axis.

The exception occurs with the behavior demonstrated in the 800 " C

case. The rapid inelastic straining at the extreme fibers significantly in-

creases the magnitudes of the stresses throughout the central core. Thus,

appreciable inelastic straining occurs over the majority of the cross sec-

tion. With this, inelastic straining along the eentroidal axis also begins to

strongly influence the overall response. In fact, the form of "failure" whidh

results might be characterised as a viscoelastic analog Loa "plastic hinge."

The Arch at Constant Temperature

The behavior of the pressure loaded shallow arch at constant tem-

peratures of 400, g00 and gO0 "C is generally similar to that of the beam-

column. Figures I0 and tl illustrate the transverse deflect'ion at the center

of the arch at 800 and gO0 "C. Note that the critical load for the arch is

estimated to lie between 179 to 186 kPa (26 to 27 psi) for these tempera-

tures.

Again, the temperature increase from 800 to 800 "C reduces useful

life by more than an order of magnitude. This is apparent f_om the signif-

icant difference in time scale between the figure. The differences between

the actual stress and the backstress for these arch examples are similar to

the those for the beam-column and thus have not been included.

One factor common to both temperatures is the sensitivity to load

magnitude. Note that only a slight increase in pressure can substantially

alter the character of the response. The reason is that in the arch, the cen-

troidal axis stress is always significant due to the curvature and boundary

conditions. Thus, it always influences behavior. "This stressing induces a

high rate of compressive inelastic straining along the centroidal axis _re-

during" the nominal arc length of the arch. This geometric change tends

to accomodale additional transverse deflection through reduction of both

the _nominal" curvature and the "unloaded" arc length of the arch. Note

also that, unlike the beam-column, where such an effect is localized near

the wall, this centroidal axis straining occurs over most of the central sec-

tion of the arch. Thus, the "failure" zone tends to be distributed and not
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localized. As such, the sudden rapid increase in transverse deflection which

occurs with the beam-column is not as pronounced in the arch.

The Influence of Time - Invsrlant Temperature Gradients

The effects ofa time-invarlant, linear (in the depth direction) temper-

ature gradient on the constant temperature response are considered next.

This type of temperature gradien_ is associated with the steady state llow of

heat through the depth. For simplicity, the gradient is assumed to remain

constant with respect to the length of the element.

For bookkeeping purposes, gradients where the temperature is great-

est at the upper surface and lowest at the bottom surface are considered

to be "positive." Conversely, the case where the greatest temperature is at

the bottom surface is denoted as a _negatlve" gradient. Note that all the

gradients were established so that the temperature of the centroldal axis

would remain at the nominal case temperature. Thus, a _-10 " C gradient

for a 400 " C beam-column implies tha t the upper, eentroidal and lower

surface temperatures are 405,400 and 395 " C, respectively.

This type of temperature gradient introduces two effects. First, dt, e

to the temperature dependence of the elastic modulus, the first integral of

the elastic modulus over a cross section does not vanish. This produces a

weak level of bending-stretching coupling. The second effect is that such

gradients cause thermal bending of the element. Positive gradients cause

downward bending therebyaugmenting the mechanically induced deflec-

tion. Conversely, a negative gradient reduces the load induced bending.

It was found that neither of these exert a major infl_fence on the con-



stant temperature behavior. Figure 12, for example, il{ustiates the typical

relative increase in tr_.nsverse deflection resulting from a depth direction

temperature grudlents for the 400 " C beam-column at a load ratio of 0.50.

Note that a temperature difference of +10 or -10 "C through the 1.27

em thick beam-column represents a gradient of + 7.87 "C/cm. The largest

temperature difference considered, namely 4- 25 "C, corresponds to a best

flux through the depth on the order of 400 kW/m s'C.

As noted above, Fig. 12 provides the relative increase in deflection.

This is the ratio of the time-dependent deflection for a given temperature

difference to the initial elastic deflection of the uniform temperature beam-

column. Thus, this ratio indicates the net ampllfication _sultlng from

inelatic and thermo-ela_tic effects.

Temperature differences less than 5 "C had virtually no influence on

the deflection of the constant temperature beam-columns. The + 10 "C and

larger temperature differences did, however, have some impact on transverse

deflection. Gradients of these magnitudes generated observable increases

in the deflection after several hours of loading. Figure 13 illustrates this

with results obtained for a g00 "C beam-column with an applied load ratio

of 0.50. The solid line represents the initial ratio of end deflection with

a thermal gradient to that ot the sero gradient case. The dashed lined

provides the same ratio after 12.5 bouts of loading. Note that although

the deflection of the beam-column is modified due to the presence of the
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Figure 10. Center deflection for the 600"C arch.

thermal gradient, the magnitude of this change is not sufficient to alter

the occurance of the general behaviors illustrated in Figs. 8 through 11.

These results are typical of the behavior observed for the other constant

temperature beam-column and arch examples.

As mentioned above, the imposition of such thermal gradients also

creates some weak bending-stretching coupling in the governing equations.

This was re,and to be an insignificant effect. Specifically, a number of test

cases were examined where the coupling term, El, was artiflcally set to sero.

There wu no sppreciabte difference in the results with respect to results

obtained when the coupling term was retained. Consequently, it can be

concluded that the potential heading-stretching coupling which might be

induced by the temperature dependence of the elastic modulus is negligible.

Arch and Beam - Column Variable Temperature Behavior

The final aspect of behavior examined is the response of the arch

and beam-column under sinusoidany varying temperatnres. Besults are
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presented for both the arch and beam-cohlmn w_thout a temperature gra-

dient in the depth direction. The combined influences of sinusoldal tem-

perature variations and a time-invarlant depth direction el, urinal gradient

are investigated only for the case of the beam-column.

In the cases examined, the temperature is assumed to vary in a sinu-

solda] manner about an elevated mean temperature of either 400 or 600 "C.

Amplitudes of 50, 100 and 150 "C are employed. Alto, in keeping with the

use of a quasi-static analysis, 1200 and 1800 sec periods are employed for

the sinusoids. Sinusoidal variations about the 800 "C temperature were

not studied due to the extremely short life exhibited in the constant tem-

perature eases.

Finally', the thermal model inc]udes a s|;ght inilia) delay belween

when the load is first applied and when the slnusoidal temperature vari-

ations commence. With some combinations of higher temperatures and

higher loads, a step-like initial transient is generated in the constitutive

law state variables. Superimposing a sinusoidal temperature at the same

time that this step-llke increase in the state variables occurs forces the

Runge-Kutta integration routine to employ exceptionally small time step
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increments to pro_de accurate results. However, the need to employ such

small time step increments passes almost immediately once the load in-

duced transient change has taken place. Thus, the short delay allows the

integration routine to stabilise before the start of the temperature oseilla-

lions. Typically, a delay period on the order o£ 50 sec is employed. Based

on a limited number of test eases, it was found that sucl| a delay period

has no appreciable impact on the overall results.

Figure= 14 and 15 illustrate the time dependent deflection of the

arch and the beam-column, respectively, for 50 and 100 "C amplitude tem-

perature oscillations about a g00 "C temperature. Note that the loading

employed in both of these cases would nominally produce a =stable" time-

dependent response under constant temperature conditions. Several inter- "

eating features can be discerned. First, the shape of each deflection curve is

a distorted sinusoid. The upper peaks tend to be exaggerated whereas the

lower peaks arc well rounded. Additionally, an underlying increasing trend

in time-dependent deflection can be observed _n both. Specifically, both

the upper peak and lower peak deflections increase between each cycle.
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The distortion of the peaks from a true sinusold is a result of the tem-

perature dependence of the inelastic strain. During the higher temperature

portion of the cycle, inelastic straining increases due to the temper'h_re

sensitivity of the constitutive law parameters. This results in a rapid in-

crease in the deflection. Conversely, the inelastic strain rate is reduced at

lower temperatures yielding less inelastic deformation during that part of

the cycle. Thus, the behavior during the lower temperature portion of the

"Cycle more closely approximates that of simple thermo-e]astic deformation

where deflection follows the thermal cycle exactly.

Tables I and II summarise these increasing trends for the arch and

beam-column cases, respectively. Note that these tables present results

obtained for a variety of temperature differences in the depth direction,

Table I. Rate of Change of Arch Deflection for $inusoida} " .

Temperature Variations

Sine Rate of Change (cm/sec)

Pressure Amplitude I" to 2 "a 1 't to 2"a

(kPa) "C Upper Peak Lower Peak

165 25 3.1gxlO -¢ 2.74x10 -7

lg5 50 3.84xt0 -r 3.20x10 -r

lg5 100 4,98z10 -s 2.87x10 -a

152 100 7.87x10 -r fl.12xlO -r

As Table I illustrates, the magnitude of the increase in deflection be-

tween the first and second upper peaks appreciably exceeds that between"

the first and second lower peaks. Although not indicated in this. or the

following table, the increase in deflection at the cycle midpoin_ temper-

acute falls between the values of the extremes. It should be noted that

this nnequal expansion of the thermal cycle deflection indicates that creep

ratchetting is occurring:

This table also demonstrates the significant nonlinearity involved in

this phenomena. The first doubling of the amplitude o£ the thermal cycle,

r, om 25 to 50 • C, results in only a modest increase in the peak to peak
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deflections. However, s second doubling, from ,_0 to I00" *C, increases

the peak to peak deflection by slightly more than an order of mag,itude.

Table II illustrates that a similsa effect for the beam-column. Note that

except for the S0 ° C amplitude with no gradient, increasing the amplitude

of the thermal cycle increases the change in peak to peak deflection in a

nonlinear manner.

Table II also demonstrates that the increase between consecutive

peaks has an overall decreasing trend. The absolute increase in deflection

decreases as the number of cycles increases. The cause of this decreasing

trend is attributed to the growth in backstress. Generally, the maxim.m

stresses do not change significantly between consecutive peaks of the tl, er-

real cycle because they are principally determined by the thetmo-elastic

deformation. The accumulated inelastic deformation does not significantly

alter this stress distribution. However, the amount of inelastic strain is

sufficient to create an increase in the backstresm between consecutive peaks,

one which exceeds that of the actual stress. Thus, the difference between

the actual stress and the backstre.m decreases. In turn, this reduces the

rate of inelastic straining. Of course, this effect becomes less significant as

the backsttess approaches saturation.

Table II. Rate of Change of Beam-Column Deflection for Sinusoidal

Temperature Variations

Sine Temp. Rate of Change (cm/sec)

AmpL Diff. Upper Peaks Lower Peaks

"C "C 1" to 2 R_ 2_ to 3 "a 1 'r to 2 "_ 2 "i to 3"_

50 0 1.48x10 -s 1.27x10 -s 1.48xi0 -s 1.27x10 -s

50 +10 8.46x10 -s g.28x10 -s 8.05x10 -s 7.82xi0 -s

50 +20 4.29zI0 -7 4.00z10 -r 4.01x10 -I 3.84x10 -7

I00 0 1.07x10 -s 1.03xl0 -e " 9.83x10 -T 9.45x10 "T

I00 +I0 2.21x10 -s 2.00x10 -s 2.01xlO "s 1.88x10 -a

100 +20 4.72x10 -s 4.27x10 -s 4.24x10 -s 3.88xI0 °a

150 0 1.87xlO-S 1.66x10 -s 1.OlxlO -s 1.45xi0 -s

150 +10 3.22x10 -s 2.91x10 -s 2.T7xlO -s 2.52x10 -s

150 +20 S.41xlO -s 4.93x10 -s 4.07xt0 -s 4.32x10 -s

The remaining influence illustrated by the data of Table II is the

effect of a time-invariant depth direction temperature gradient on the in-

elastic response. In general, the change in peak to peak deflection is signif-

icantly greater in the presence of the time-invafiant temperature gradient.

Typically, almost an order of magnitude increase in peak to peak change in

deflection occurs for the lowest temperature cycle amplitude. Interestingly,

the effect of the depth direction gradient becomes less significant as the

amplitude of the thermal cycle increases.

The ultimate significance of this is whether or not temperature gra-

dients in the depth direction are truly negligible. The data of this table

tend to indicate that the gradient may not be a negligible factor when the

magnitude of the gradient is of the same relative magnitude as the thermal

cycle. In such eases, the thermal gradient does appear to exert an appre-

ciable influence on the overall response. Obviously, this also tends to imply

that the impact of the depth direction gradient is potentially very signifi-

cant in transient cases where the magnitude of the temperature difference

through the depth can easily .approach that of the gross transient change

in temperature.

CONCLUSIONS

The elevated temperature behavior of generic types of structural el-

ements fabricated from a typical aerospace alloy have been studied an-

alytically using a nonlinear kinematic analysis and employing a recently

developed nonlinear unified hereditary constitutive law to express the time-

temperature dependence forthe material. The study results demonstrate

10

that, "due to the specific format of the constitutive law, the behavioral re-

sponse of the structural element is determined principally by the difference

between the actual stress in the element and the backstress variable of the

constitutive law. The first of these, the actual stress in the element, is

basically.controlled by the geometry of deformation. However, the second

factor, the backstress, is governed by the appropriate growth rules of the

constitutive law.

This implies that accurate results for such an analysis can be ob-

tained only if the form of the backstress growth law and the numerical

values employed therein have been established to a reasonably high degree

of certainty. Otherwise, the prediction of the conditions under which the

• response of the structural element may change from that of a "steady" form

of creep to a rapid approach to failure could not be established with any

degree of reliability. For entirely similar reasons, the actual stresses in the

structural element needs to be'establlshed accurately to ensure that reliable

results ensue.

The specific results obtained from the sample problems indicate that

a constitutive law of the type proposed by Walker has the capahillty to

model vaaious forms of creep behavior. Under various constant load and

temperature conditions, it has been shown that the predicted response may

vary from simple primary creep-secondary creep to almost instantaneous

tertiary creep. Additionally, under varying temperature conditions, the

Walker law has demonstrated the capability to predict the development of

the type of inelastic strain biasing which can produce creep ratchettin8.

Assuming the Walker law and associated constants provide an accu-

rate representation of the elevated temperature response of a material such

as Hastelloy X, the sample problem results indicate that the existence of a

depth direction temperature gradient in a thin section may not always be

negligible. Specifically, under constant temperature conditions, the results

indicate that such temperature gradients do not appear to exert any sig-

nifleant influence on behavioral response. However, such gradients do have

a significant impact when the. overall temperature of the element is not

constant. The existence of this type of gradient can appreciably accelerate

the overall rate of creep• It is indicated that this speci_c effect is most

pronounced when the magnitude of the temperature difference through the

depth of the element is on the order of the amplitude of the gross variation

in temperature of the element. Consequently, in addition to when such con-

ditions may exist in a "quasi-steady state" situation, this implies that such

gradients may exert considerable influence in transient thermal problems.
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APPENDIX A CONSTITUTIVE LAW

In JLs most general integral form, Walker's functional theory has the

format:

' 2 ® &"_ - 3c,[e(()] -_) d4

.. 3 a_ /
(a- I_)

nu(t) = fl_'_(_)+ n_[e(t)]c_j(t)+ n_[e(t)] ¢-(c¢,1-_¢,_)1 d_,
(4- t,s)

X(*)= K_.[O(t)]- K,[O(t)]e-.,'le0llwl') (A- ic)

+ 2.[e(()] _ -
('.,t _,/)

- :', .... • (A - tel
c.(0c.(0/'

._' _u[e(._)]_0w_,-,/.lo_ell _ (.4- 1I)q(t) = K(_) ' O( ' -_'

and

G(_)= ._f{ (ns[O(_)] + ns[e(()]e -_''[e'_¢)lwO'))

+ no[e(Ol(_%(On,fl_))¢_I_l_ll-*l"} e_,

(.4 - lg)

['w(t) = "--'_ --" _ (.4- ,_)
/. V_W _ _. ..

Square bracket terms, of the form it[®(t)], are used to denote the depen-

dence of the material constants _, #, _', n, m, n_, ha, n_, n_, ns, ns, nr,

K_, and K_ on the temperature, O. However, for clarity, the indication of

the explicit dependence on temperature will be suppressed in _he following

development.

The differential format for Walker's functional theory is obtained

through difl'erentiating the above relations _:th respect to time. Employing

11
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Lelbnis's rule, differential formats for Eqns. (X-ld), CA-if), (A-It) and

(A-ih) are readily obtained. A somewhat simplified differential format

for Eqn. (A-Ib) may be obtained in the following manner. Differentiating

Eqn. (A-lb) with respect to time and using Leibnia)s rule, after rearranging,

yields

• 8n, _. [_n)6 na6] fie -(a0)-e'((ll/geqfi,j = ntj+(n_ +n,)_j +_i_-_o + ,-_ = .. 0"-/-"
(A- 2)

The integral which appears in the above is identical to the integral of

Eqn. IA-lb). Consequently, solving Eqn. (A-lb) for the integral and substi-

tuting into Eqn. (A-2) yields the differential format given by Eqn. (A-6b).

With some manipulation, the" differential form of Eqn. CA-In) may

b,e stated in a _power law _ type format. First, Eqn. (A-In) is differentiated

with respect to time and then simpli6ed using the deviatoric stress tensor

to yield

s =f'e_iQ(,)_,_((li[_),g,,_ 2 ae. 28__- _,,6,j ]aS.(_,,j-n,) J. a¢ _¢ s
(A- a)

Note that in establish the above it is necessary to show that fJl, a = f_k -- 0.

These, however, follow directly from Eqns. (A-lb) and (A-le) provided the

inelastic portion of the deformation may be treated as) at least, approxi-

mately incompressible (i.e., e_ _ 0).

Therefore, substituting Eqn. (A-S) into Eqn. (A-2) and using the

differential form of Eqn. (A-ld) yields:

2 a n,h (A- 4)2_j = _q(_ -

The Q term can be replaced with the aid of the differential forms of

Eqns. (A-If) and (A-lh). After some algebraic manipulation and minor

rearranging this yields:

)"o7= , (:,_ - n,)(I_,_ - n,_
x (.4- s)

Consequently, substituting Eqn. (A-5) back into the differential form of

Eqn. (A-If) and using Eqn. (A-4) yields, after some algebra, the differential

power law of Eqn. (A-la). Thus, the enmplete set of differential relations

for Walker's functional theory are:

¢ij --
_ s s /nK 2 1 s

• _gn_ • . • 1 8nu_..'t

fi,, = fif_+ (n, + n,)_,_+ eq._-e - (n,_- % - n,_,)(_ - _--_._),
(.,_- sb)

K = K_ - K_e -"'w, (A - 6c)

2_+j _- _q_ilk + 2_tclj -- _rij -- _ij(3_ + 2p)a6, (A -- 6d)

(.,t- eel

= (n, + ,,e-"W)w + n. [_"q"d ' (.4- _I)

a_d

2. °O7

Note that a differential form for the fitnction Q is not required since it does

not appear in any of the other expressions.

Nume¢ical constants for the law were established [22-24] from uniax-

ial bar specimens tested under full_" reversed, strain-rate controlled cyclic

stress-strain tests. These tests were conducted for a variety of temperatures

and strain rates. The testing eonditlons were sufiSciently rigorous to cause

plastic deformation during the loading cycle. The creep and relaxation

properties were deduced from observation of the behavior of the samples

when the cyclic loading was "held" at various points on the "steady-state"

hysteresis loop. Appendix Figs. A-I through A-7 illustrate the tempera-

ture dependent parametric values established under that work. Note that

the material constants K_, nx, n4, ns, and n are seen over the enitre tem-

perature range considered. This results in additional simplifications to the

constitutive law.

APPENDIX B FINITE DIFFERENCE EQUATIONS

Solutions for the governing nonlinear differential equations are ob-

tained using a Newton type method for nonlinear differential equations. It

is assumed that trial solutions for the transverse and axial deflection func-

tions, denoted as g' and _, respectively, exist. From these, trial values for

eentroidal axis strain and cross section rotation, i, and _, respectively, are

determined. Then, using the approximations _o = _°+ A_o and _b = _+ A#

to substitute into gqns. (16) yields

i(ZoA,. + r:, o, •- -o-7 = p" - _ + o,--r'

. _Aeo "- "as"_ °fl i '_ (_ - _b)(_o+ tEO-TfV + (E, + t_')-_T = --_; - T;"

The terms N and ]_ are evaluated by substituting I. and _ into Eqns. (11).

Numerical methods are used to approximate the derivative terms on the
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right-hand side of Eqns (B-l). The second derivative of the moment cor-

rection, which appears on the left-hand side of Eqn. (B-l=), also is evalu-

ated numcriea|ly. This avoids the numerical problems which can result in

approximating fourth derivatives directly.

Assuming w = & + Aw and a similar expansion for u, upon sub-

stitution into gqa. (7) and neglecting terms of order (Aw) _ and higher,

yields

.8Au ._A,. = X(.3;_ ' + ,¢Aw)+ B( - ,=_,u) (B - 2)

where the factors A and B are defined as:
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x = z+ _ + _, and e = _; - ,=a. (B - 3,=,b)

Differentiating Eqn. (B-2) with respect to s yields, after rearranging,

OA_. -k 0rAn _. OAu

(B-4)
_82Aw .... SAw

+s-_Tr-p + (u+=A)-_C+_C=,,

where C and D are given by

8=6 8_ Os_• 06

C = _ + "T, and D = -gT,, - "T," (B -_ _a,_,)

Developing an expression for A_ it accomplished by using Eqn. (8). Since

it is suumed that _ = _ + At, substitution into Eqa. (8) yields

,in(_g+ A_)_sin_g+ At cos¢ _.

-/9@ -OAw

8_ + _ --r--- + ,cAu+ _*
_/I + 2_. + 2Ae. _/I + 2_. + 2A_.

(_- s)

where the approximations sin AO _ At and cos A_b _ 1 have been used.

For small Z, it isreaJonable to assume that As, < _,, thus allowing the A_,

term to he neglected. Thus, since the first term on the left-hand side,

Jeeording to Eqn. (8), is equal to the first term of the right-hand side, this

implies that

-SAw
+ gAu

_ cos__ 0_,__.:__. (B- 7)
Vl +z(.

Therefore, combining Eqns. (8) and (B-7) yields

I. 8Aw
A_ ==gt-_-f." +,_Au). (a - g)

Derivatives of AO are obtained from Eqn. (B-8). In this, it is assumed

- that the term I/A may be treated as &n approximate constant and thus

need not be differentiated. This provides significant simplifications without

engendering any snbstantial inaccuracies since the correction terms become

14

negligible a_ the exact solution is approached. Consequently, differentiating

Eqn. (B-8) with respect to s yields:

OA¢ 1, 0sAw OAu,

_-Zt--g_-, + ,_--_--), (V - _o)

and

O'A4 1. 0SAw O'Au.

o,'" = X(-"_-r,_ + "'-_;_,')" (B -o_)

Central difference formulae s_e used to approximate the derivative

terms. _owever, prior to substituting into Eqns. (B-I) it is useful to estab-

lish the following definitions:

2E, 2Er

eq = Eo+kiEx and d_ = E, + _iE,. (B - 10c, d)

Thus, substituting the various expressions given above into Eqns. (B-

1) yields, after rearranging, the general finite difference nodal eq.ations

( '_ KEn , (_¢E,B,_, a_.A, ,¢b,+ -- st Au_ s +
2AI-IAs / - \ _ 2As 2AiAs/Aui-t

+(_ E, _E,( 1

+ ,_'_ + A""""3"--+ _) Au,+, - k2"-_-'_-_+ _) A u,+,

+ _2--_--_--=+ _) Aw,_,

- (*¢_ _ + _AB_ + _+'_*_;-_ _'_ A¢-tAsi2Es _/b( _Awi_ t

E, zr, * __L_) 2b.-(iT_,,(s'-,-s,+,)-'*_ _, _-_,.q-__+,,+, _,,_,

_ (E,B(+, Er _ . . 0=6{,
=a,= x,,_,_-)=w,+s=p +-_-,, -i,-_,

and
(S- n)

.,o,,, +- _1 Aui-t + Aw_+r

,As' + 2As - X--_,_) _w'+' + (- _.----_+

+_A_ = 2As

= -VF - _"'_-, -
(s- t_)
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These two equations p_ovide the finite-difference approximation for the de-

flection of the internal nodes of the beam, that is for the subscript i over

the range 3 < i < n- 1, (see Fig. 4). Therefore, for an arch of n + I

total nodes, they provide a system of 2n - 6 equations in 2n + 2 unknowns.

Thus, eight additional equations are required to provide a unique solution

for the problem. Six of these equations are obtained by using the boundary

condition. These provide two sets of three equations, one set applicable to

node 1 and the other set for node n 4- 1.

As evidenced above, the boundary conditions do not provide a sum-

dent number of relations to enable unique solution. This, in part, results

from the inherent coupling generated by the assumption of Euler-Bernoulll

bending when both axial and transverse deflections are possible. Note that

the deflection functions are not only related to one another, hut they also

appear in the same functional format in both expressions. The derivative

of one is added to (subtracted from) the other multiplied by the curvature.

This, in turn, indicates that a form of implicit coupling exists between the

two generalised displacements, centroidal axis strain and rotation. Ideally,

the generalized displacements should be completely independent.

A number of approaches can be employed to generate the two addi-

tional equations needed for unique solution. The one used in this study is

to require the "centroidal axis" strain in the wall to vanish. Mathemati-

cally, this is equivalent to appending, to the existing system of equations,

the two additional equations:

A¢ e, = -_d and A¢,_ = -iF_, (B - 14u, b)

whese _,, and _,r represent the strain in the left and right extensions, respec-

tively. No condition is established for the "rotations _ which might occur in

the wall sections. This is not felt to be significant since the nodal mesh, at

least for the equilibrium problem, is a eentroidal mesh.

Using the boundary conditions and the two Uwall strain" relations it

is possible to eliminate the transverse and axial displacement components

for nodes 1, 2, n, and n + 1 from the genera! finite-difference equations.

This leaves a system of exactly 2n - 6 equations in the same number of

unknowns. If the eoefEeients of these equations are arranged in matrix

form, the result is a banded matrix with a bandwidth of six.

15 .,_
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Thermodynamically Consistent Constitutive Equations

for Nonisothermal Large-Strain, Eiastoplastic, Creep Behavior

Richard Rift, ° Robert L. Carlson,'[" and George J. Simitses, +

Georgia Institute of Technology, Atlanta, Georgia

w

The paper is concerned with the development of constitutive relations for large nonisothermal ela_,tic-
viscoplastic deformations for metals. The kinematics of elastic-plastic deformation, valid for finite strains and
rotations, is presented. The resulting elastic-plastic uncoupled equations for the deformation rate combined with
use of the Incremental elasticity law permits a precise and purely deductive development of elastic-viscopla_,tic
theory, it is shown that a phenomenological thermodynamic theory in which the elastic deformation and the
temperature are stale variables, including few internal variables, can be utilized to construct elastic-viscnplastic
constitutive equations appropriate for metals. The limiting case of inviscid plasticit) r is examined.

= =

Nomenclature

do = element of area
ds = material line element

d,, = deformation rate
E,, a = strain rate
F = yield function

f_,F" = deformation gradients
g,,G 4 = base vectors

g_,G r_s = metric tensors
J = absolute determinant of the deformation

gradient
k A AAa =internal variables

,OtC,,"aCD

n = normal to the surface
P = force

q = specific applied heat

s = entropy
T = temperature
t = fraction sector

t = time
u = specific internal energy
V = volume
v" = velocity
w = specific mechanical work

I4_ = spin tensor
x' = inertial coordinate system
x - = material coordinate system
x "_ = convected coordinate system

p =density
u = Cauchy stress tensor
r = Kirchhoff stress tensor

= specific free energy
V

= Jauman stress rate

0 = time derivative
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Introduction

HE prediction of inelastic behavior of metallic material,,
at elevated temperature has increased in importance in

recent year_. Many important engineering applica[ions in-
volve the use of metals subjected to cyclic thcrmomechanical

loads, e.g., hot section components of turbine engines, nu-
clear reactor components, etc. These materials exhibit
substantial complexity in their thermomechanical constitu-

tion. in fact, so complex is their material response that it
could be argued that without useful a priori information, ex-

perimental characterization is futile. It is, therefore, impor-
tant to be able to model accurately the nonelastic behavior

of metals under cyclic mechanical and thermal loading at
temperature levels for which creep and recovery introduce
significant response phenomena.

Under this kind of severe loading conditions, the real
world of structural behavior is highly nonlinear due to the

combined action of geometrical and physical nonlinearities.
On one side, finite deformation (in a stressed structure) in-

troduce nonlinear geometric effects. On the other side,
physical nonlinearities arise even in small strain regimes,
whereby inelastic phenomena play a particularly important
role. From a theoretical standpoint nonlinear constitutive

equations should be applied only in connection with
nonlinear deformation measures. However, in engineering

practice, the two sources of nonlinearities are separated for
practical reasons, yielding at one end of the spectrum large
displacement and large rotation problems and on the other
end inelastic analysis in the presence of small strain.

Constitutive models for small strain in engineering litera-

ture may generally be grouped into three categories:
classical plasticity, nonlinear viscoelasticity, and theories based

on microstructural phenomena. Each group can be further
separated into "unified" and "uncoupled" theories, where
the two differ in their approach to the treatment of rate-

independent and rate-dependent inelastic deformation. The
uncoupled theories decompose the inel_.stic strain rate into a
time-independent plastic strain rate and a time-dependent
creep rate with independent constitutive relations describing

plastic and creep behavior. Such uncoupling of the strain
components provides for simpler theories to be developed,
but precludes any creep/plasticity interaction. Recognizing

that cyclic plasticity, creep, and recovery are not independent
phenomena but rather are very interdependent, a number of
"unified" models for inherently time-dependent r_onelastic

deformation have been developed recently.
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Classical incremental plasticity theories are macro-

phenomenological because they base the derivation of state
variables purely on experimental results without direct
reference to the microstructure of the material. Most in-

cremental plasticity theories have four major components: 1)
a stress-elastic strain relation, 2) a yield function describing

the onset of plastic deformation, 3) a hardening rule that

prescribes the strain hardening of the material and the
modification of the yield surface during plastic flow, and 4)
a flow rule that defines the components of strain that is

plastic or nonrecoverable. Research in this area is volumi-
nous. For example, Zienkiewicz and Cormeau _ developed a
rate.dependent unified theory that allows for nonassociative

plasticity and strain softening, but does not model the
Bauschinger effect or temperature dependence. Extensions of
classical plasticity to model both rate and temperature effects

were presented recently by Allen and Haisler, 2 Haisler and
Cronenworth, 3 and Yamada and Sakurai. 4

In the nonlinear viscoelastic approach, the constitutive
relation is expressed as a single integral or convoluted form.
This type of constitutive model employs the thermodynamic

laws along with physical constraints to complete the for-
mulation. A detailed review of several existing theories is
presented by Walker. _ Walker's theory is based on a unified

viscoplastic integral developed by modifying the constitutive
relations for a linear three-parameter viscoelastic solid. The
theory contains clearly defined material parameters, a rate-

dependent equilibrium stress, and a proposed multiaxial
model. An important shortcoming of Walker's theory is its

failure to model transient temperature conditions. Many
other nonlinear viscoelastic theories have been proposed, in-
cluding those by Cernocky and Krempl, 6 Valanis, _ and
Chabache. a

The microphenomenologica] theories attempt to represent
the response of polycrystalline materials in terms of various
micromechanisms of deformation and failure. Various

dislocation theories have been developed to predict plastic
deformation in terms of dislocation interaction, slip, glide,

density, etc. Most of the material models developed to date
depend primarily on the number of state variables used and
their growth or evolutionary laws, Many of the recent

"unified" microphenomenological theories have been dis-
cussed and evaluated by Walker 9 and Chan et al.t°

One example of a microphysically based constitutive law is

an elastic-viscoplastic theory based on two internal state
variables as proposed by Bodner et al. _ These authors
demonstrate the ability of the constitutive equations to repre-

sent the principal features of cyclic loading behavior, in-
eluding softening upon stress reversal, cyclic hardening or
softening, cyclic saturation, cyclic relaxation, and cyclic
creep. One limitation of the formulation though is that the

computed stress-strain curves are independent of the strain
amplitude and therefore too "flat" or "square."

Miller t2 has reported research on the modeling of cyclic

plasticity with "unified" constitutive equations. He also
recognizes the shortcomings of many theories in predicting
hysteresis loops that are oversquare in comparison to observed

experimental behavior. Improvement is accomplished by
making the kinematic work-hardening coefficient depend on
the back stress and the sign of the nonelastic strain term.
Theories that are similar in format to Miller's have been pro-

posed by Krieg et al. _ and Hart. _4 The models use two inter-
nal state variables to reflect current microstructure state and

are based upon models for dislocation processes in pure
metals. All of these constitutive theories were formulated

without the use of a yield criterion. Since these models do

not contain a completely elastic regime, the function that
describes the inelastic strain rate should be such that the in-

elastic strain rate is very small for low stress levels. Theories

with a yield function and a full elastic regime have been
developed for the case of isotropic hardening by Robinson :s
and Lee and Zavrel _s for both isotropic and directional
hardening.

As previously noted, the quantities utilized in the small

strain theory of viscoplasticity (stress, strain, stress rate, and
strain rate) are defined only within the assumption of "small
strains." Yet the precise definition of what constitutes

"small strain" is always left unstated. Whether or not the
stresses for a given case are "small" cannot be determined a

priori by geometric considerations. In general, one cannot
know in advance whether, for a given loading of a material,
the "small-strain" assumption (always left undefined) will

hold or not. The question of whether the small-strain ap-
proximations are valid is always avoided in the "small-
strain" literature. Furthermore, as Hill t_ points out, the really

typical plastic problems involve changes in geometry that
cannot be disregarded. In many cases, for example, it is suf-

ficient to take into account finite plastic strains and small
elastic strains or vice versa. From the theoretical viewpoint,
it is desirable in all cases to have a theory that intrinsically

allows for both the elastic and plastic strains to be large.
Such a theory, of course, must reduce to the earlier mentioned

special cases, as limiting cases. Furthermore, such theories
provide a check for those obtained by generalizing small-
strain theories.

The mathematical theories of deformation and flow of

matter deal essentially with the gross properties of a
medium. Heat and mechanical work are considered as addi-

tional causes for a change of the state of the medium. The
resulting phenomena in any particular material are not

unrelated. Therefore, a thermodynamical treatment of the
foundation of the theory of flow and deformation is ap-

propriate and, indeed, the obvious approach. Two very dif-
ferent main approaches to a thermodynamic theory of a con-
tinuum can be identified. These differ from each other in the

fundamental postulates upon which the theories are based.
An essential controversy (a good survey of this controversy is
given in Ref. 18) can be traced through the whole discussion

of the thermodynamic aspects of continuum mechanics.
None of these approaches is concerned with the atomic struc-

ture of the material. Therefore, they represent purely phenom-
enological approximations. Both theories are characterized
by the same fundamental requirement that the results should
be obtained without having recourse to statical or kinetic
methods.

Within each of these approaches, there are two distinct
methods of describing history and dissipative effects: the
functional theory _9 in which all dependent variables are

assumed to depend on the entire history of the independent
variables and the internal variable approach :° wherein

history dependence is postulated to appear implicitly in a set
of internal variables. For experimental as well as analytical
reasons, zL_ the use of internal variables in modeling in-

elastic solids is gaining widespread usage in current research.
The main differences among the various modern theories lie
in the choice of these internal variables.

Therefore, the predictive value of an elastic-viscoplastic
material model for nonisothermal, large-deformation anal-
yses depends on three basic elements: 1) the nonlinear
kinematic description of the elastic-plastic deformation, 2)

thermodynamic considerations, and 3) the choice of external
and internal thermodynamic variables. The objective of this

paper is to examine each of these elements, illustrate their in-
teraction, and extend these considerations to model the

large, nonisothermal, elastic-viscoplastic deformation
behavior of metals.

Moreover, the paper deals with the phenomenological
theory of elastic-viscoplastic bodies. The process inside the
lattice and at the border of the crystal grains is taken as the

physical background, without considering its connection to
the macroscopic behavior of the material at the present.

Kinematic and Fundamental Considerations

Consider body of volume V that occupies a finite region

of Euclidean space. When subjected to prescribed body
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forces, surface tractions, surface temperature, and surface

velocities, the body undergoes motion characterized by
.r/-.-X_(X%t). The material particles of the body are iden-

tified by coordinates X °, which are referred to as material
coordinates. The relation of the material particles to the
material coordinates X" does not change in time. The places

in space that the particles occupy during the motion are iden-
tified by the coordinates x _. Functions X' describe the motion

of the particles X '_ through space. The place occupied by the
body at t=0 is taken as the initial configuration. In this con-
figuration the body is assumed to be strain-free, but not
necessarily stress-free.

A third coordinate system is defined by the material coor-
dinates as they deform with the body. This system will be

denoted by X A, which are referred to as convected coor-
dinates. The current configuration, of the body with spatial
coordinates x _ and convected coordinates X '4 and the initial

configuration of the body with material coordinates X _' will
be employed in what follows. For the spatial coordinates x _,
the covariant base vectors g,, the contravariant base vector

g', the metric g_, and its dual grS are used. Similarly, for the
convected coordinates X _, the covariant base vectors GA,

the contravariant base vectors G A, the metric tensor G.4a,
and its dual G As are used. With regard to the initial con-

figuration, the covariant base vectors Got, the contravariant

base vectors G", the metric tensor G,,a, and it dual G "a are
used for the material coordinates X%

For a second-order tensor A with components A n in the
spatial coordinates and components A ,48 in the convected

coordinates, the following is true:

,4 = Ang,gs = A Aa G AG s (l)

The two sets of components are related to each other
through

A '_ =_A_BA As (2)

where X;a denotes the partial derivative a×'(Xa,t)/aX _.
For the motion, characterized by X" (XA,t)= X" (X=,t), we

have

From Eq. (3), it is seen that G_a--- 0, where .the dot denotes
time material derivative. The tensor transformation equa-
tions (1) and (2) will be used extensively in what follows.

A material line element ds=dX=G _ in the initial con-
figuration when subjected to motion ×'(X%t) is deformed
into ds = dx'g, in the current configuration. The {ine element
dv" is related to the line element dX _ through the deforma-

tion gradient F_ by d.g--F'_dX _ where

0x"

F'_ =--_-(xa.t) (4)

The mapping defined by the deformation gradient F=
F'.g.G" allows one to shift quantities from the current con-
figuration to equivalent, but alternate, quantities in the in-
itial configuration. For example, the right Caushy-Green ten-
sor C=C._G=G _ and the Green-St. Venant strain tensor
E=EoaG=G _, in the initial configuration are

ds = dS = g,sdx" dM - G.adX" dX _

= (g,,F'F_ - G_a )dX°dX _

= ( C,a - G,, 3)dX"dX _ = 2E, adX_dX _ (5)

The components of the deformation gradient, which relate
a deformed line element dX A in the conveeted coordinates to

the undeformed line element dX" in the initial configuration,

are given by f_, .

F,_ = _.4f_ (6)

Equation (6) places in a single expression the easily confused
but distinct ideas of the transformation of tensor com-

ponents under a change of coordinates and a shift between
the current configuration and the initial configuration as a

setting for the governing equations. Truesdell and Toupin '3
and Truesdell and Noll :a emphasizes the current configura-

tion with the spatial coordinates and an initial configuration

with material coordinates. As a result, the deformation gra-
dient plays a prominent role in their work. Only in isolated
spots do they mention convected coordinates and, then, as
indirectly as possible. On the other hand, Green and

Adkins zs and Sedov :6 rely heavily on convected coordinates.
Our intention here is only to tie the two together for the pur-
pose of discussing elementary assumptions. Recently, Men-
delssohn and Baruch 27 review this same point as well as ad-
ditional material relevant to sound numerical formulation of

finite deformation problems.
The velocity v= _g, of a particle X" is defined by

ax"

v" =-_-[-( X".t ) (7)

From the spatial gradient of the velocity, the deformation
rate

d = d_._g'# = d,tsG t G s (8)

is defined as

d_,= V,.(V,., + V,.,) (9)

The spin

,,g _ = W'taGA Gn (10)

is defined as

w,,=v2(v,.,-v,.,) (ll)

In the initial configuration, the Green-St. Venant strain rate
is the shifted deformation rate,

E_a = F_F_d_ - rArnd
--dnd_ AB

(12)

Basic to most of the postulated models of large elastic-
plastic deformation behavior is the additive decomposition

of d,, and E,_ into elastic and plastic parts, :s

E P E P
d,_=dr,+d,_, E,._,= _',,,, + _',,,_ (13)

The validity of this additive decomposition in the case of
finite elastic-plastic strains has been questioned by Lee and
his associates. :gJ: Lee's '9 approach is based on the total

purely elastic unloading from the current state to an in-
termediate unstressed plasticity deformed configuration,
without any reverse or other kind of plastic flow. The major
point in his theory is to decouple the total elastically induced
distortion and measure it from a relaxed unstressed state,
which is only plastically deformed from the initial to the in-
termediate configuration. Accordingly, the deformation gra-
dient F is decomposed in the form

EP
F= F F (14)

P
where F transforms a line element from the initial configura-

E
lion to the intermediate configuration and F from the latter
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to the current configuration. The intermediate configuration
P

is chosen in such a way so that F is unaffected by the

presence of rigid-body motion. The deformation rate tensors
d,, and d,., are then defined. After some manipulations, Lee
shows the following relation:

E E P E I E P

d,, =d" +F,_duF,-, I J +F,_ I1',,/"_. r (15)

where the subscripts s denote the symmetric parts. Gen-
eralization of Lee's theory for anisotropic elasticity was

given by Mandel) _
Lee's theory is based on the assumption that the elastic

law does not change with the history of deformation and,
hence, a total elastic unloading can take place. However, it
has been shown _'Lthat after a fair amount of plastic flow has

taken place, reverse plastic deformation will result soon
upon unloading, even for small strains. Therefore, a total
elastic unloading cannot have any physical significance. In
view of this, the theory of Lee appears as a special case of
the theory of Green and Naghdi)" Although not as general
as the theory of Green and Naghdi, Lee's theory has the ad-

vantage of being more easily fitted with the physical property
of invariance of elasticity with respect to plastic deforma-

tion. In particular, Mandel _3 has pointed out that the Green-

Naghdi theory is not convenient if one wants to include
anisotropic elasticity effects. All this can be avoided by the
use of the convected coordinates, as proposed by Sedov :_

and Lehmann) _ The formulation presented herein will
follow the work of Lehmann.

All quantities from here on will be related to the metric of
the coordinate system X "* in the deformed state. Hence,

(16)

and the deformation rate is

d;:= Vz G'_Bd a_ = - '/ZG cn G _'

= V:(f-i)_;l(j')a = _ !/:(f-t):_j_ (17)

The deformation gradient may be split into its elastic and its

plastic components in th e following manner:

deformation rate according to

E E P E
d:=symV:l(f-_)_(f)rcl+symV:l. Or-IA)6[f).rf,.l"_ r

E E E P
(¢-_).4 rr l_symV:l (f-i)#(f-i).r6fcS I= sym'/: { j rgc (19)

E P

In the current configuration of the body V, consider an
element of area da on the surface of 5 with an outward nor-

mal n=n,g'=naG A. If the force dP=dP'g, =dP_G4 is act-

ing on this element, the fraction vector is t=dP/da. The
Caushy stress,

o = a'_g,g, = a "4a G_ Gs (20)

defined, such that t=a.n, which in component form (in

terms of spatial coordinates) is t'=a'_ns. In the convected
coordinates, it is t A = oABns.

It is convenient to work with the Kirchhoff stress tensor r

in the current configuration, obtained from the Cauchy
stress by scaling

- PO _A A
r_ =-_aJaa (21)

P

where ,o denotes the current mass density, a0 the mass density

in the initial state, and J the absolute determinant of the
deformation gradient at the current configuration.

The time derivative of a tensor such as stress, which is

associated with the current configuration, admits infinitely
many definitions, depending upon the coordinate system

employed in the computation of such time derivatives. For a
correct large-strain, large-rotation elastic-plastic model, the
notion of "invariant stress fluxes" and "objectivity" must

be introduced. A good treatment requires more space than is
available here. '3 The corotational stress rate, also referred to

as Jauman stress rate, will suffice for the purpose of the

present discussion. Hence, in convected coordinates,

_7

+ dcaa - daa. d

V
4 "4 AC Cr_ = r8 + dcra - ds_ (22)

From Eq. (21), the following relations between the various
rates of Kirchoff stress and Cauchy stress are obtained:

P E

f_

E P
(:- ')_ U'- _)_

(IS)

The use of capital greek subscripts and superscripts (Gar)
denotes parameters belonging to a fictitious intermediate
state, which is in general incompatible. The circumstance of

the noncontinuous configuration in the unstressed state has
been observed by Sedov, -'_' who points out that convected
coordinates, as used herein, become non-Euclidean in this

configuration.
This multiplicative splitting of the metric change in the

convected coordinates leads to an additive splitting of the

i'] = fi-&a_ + JdCc oa

=--a_i + JdCco_ (23)

If a rate constitutive law is postulated between b and d in
finite inelasticity theories, then a potential does not exist,
which is necessary in the variational or thermodynamics-

based formulation of the problem. The basic difficulty lies

with the d'_. term. This is remedied by postulating a con-
stitutive law between _- and d.

The Elastic Deformations

The present study is concerned with the structure or the
constitutive relation of an elastic-viscoplastic (elastic-plastic)

medium. The term elastic-viscoplastic means that the viscos-
ity does not intervene in the elastic domain whose boundary,
in particular, is well defined at every stage of "he deforma-
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tion. For simplicity, we assume further that the thermoelastic
behavior of the body is isotropic and unaffected by inelastic
deformation in the sense that the material constants
characterizing the thermoelastic behavior are independent of
inelastic deformation. Thus, we can obtain a unique relation

E
between the elastic deformations represented byrd, the Kirch-
hoff stresses r_-, and the temperature T,3_-.-_o

E E E E
4__ :4 4 • rd,.t" o ) (24)f_-f_-(rc, T), r_.=_c(.f_,T); T=T( 4 a

This function may be transformed into an incremental rela-
tion by differentiation with respect to time. This leads to a

general expression of the form

E E w
d_- = d_- I _c,',c, T, i", G Ac, d_. I (25)

From Eq. (24) we see that the total deformation rate enters
the incremental form of the thermoelastic stress-strain rela-

tions. Therefore, the thermoelastic deformation is not in-
dependent of the inelastic deformation occurring at the same
time. This follows from the fact that in the integrated form
of the thermoelastic stress-strain relations Eq. (24), the
stresses and the strains are referred to the deformed state of

the body.
In view of the present discussion and the discussion in the

previous section, the hyperelastic behavior described by Eqs.
(24) and (25) will be replaced by a hypoelastic law. The
hypoelastic law is a path-dependent material law, since it
cannot be expressed in terms of an initial and a final state; it

depends on the path connecting these states. Otherwise, if we
did not make such a change, it would be necessary to retain
the finite deformation measure in the constitutive law. For

small elastic strains, there is practically no difference be-

tween hypoelastic and hyperelastic laws, as shown, for exam-
ple, by LehmannJ 6

The above could be illustrated by the following example.

From the frequently used elastic stress-strain relation,

E

+ a ( T- T0)6_- (26)

we get

E_. 1 E v E + (27)

which may be replaced by

E 1 (V i, V "3
a.4_ Ir._,_ re8 A_ a 7"_ + a ?"8_- (28)

We assume that inelastic deformation occurs if and only if

.4 AB
F(', c, T,k ..... a c ..... Aco .... ) = 0 (29a)

aF v OF .
c + --_-- T> 0 (29b)

or, for elastic-plastic material,

A ABF( _c, T,k ..... ctc ..... Aco .... ) >0 (30)

for an elastic-viscoplastic material. The function F represents

the yield condition that bounds the domain of pure thermo-
elastic behavior in the ten-dimensional space of stress and

temperature. The inequality given by Eq. (29b) is the loading
condition. The actual form of the yield condition for a given
material is determined by a set of so-called internal

parameters, which are scalars and/or tensors of even order.
The current values of the internal parameters depend on the

initial state of the material and the history of the ther-
momechanical process.

Thermodynamic Processes

In the treatment of elastic-plastic or elastic-viscoplastic
deformations, we have to distinguish between the description

as a thermomechanical process and the corresponding one by
means of thermodynamic state equations. It is sometimes
assumed that, in the case of processes which proceed through

nonequilibrium states, it is fundamentally necessary to start
with a description of the process. _9'24"3rAlternatively, it has
been proposed that one might assume local equilibrium for
the elements of a body and therefore describe the state of the
elements, in general, by state equations. -as4° The conse-

quences of adopting these two approaches become par-
ticularly clear when considering the influence of entropy. In

the description of the process, entropy is a derived quantity
and in principle we can proceed without introducing it. In
the description by state equations, it is, on the contrary, a

necessary state value that, at least in principle, can be im-
mediately determined. When restricting ourselves to homo-

geneous, quasistatical thermomechanical processes, the
description by state equations can be reviewed as equivalent
to that by processes) TM The controversial issues will, thus,
not be discussed further.

Restricting ourselves to elementary processes, we need not
analyze whether the applied heat arises from heat conduction
or from heat sources. For the same reason, it is not

necessary, in our case, to introduce the temperature gradient
in addition to the temperature or the body forces in addition
to the stresses.

The first law states, under our simplifying assumptions,

that the rate of the specific internal energy u is the sum of
the rates of the specific mechanical work /v and the specific

applied heat q,

u= ,k,+ 0 (31)

The rate of mechanical work is given by

W= l---_cdc (32)
P0

and may be split into an elastic and an inelastic part accord-
ing to Eq. (19),

1 E I P E I

Iv==_-o _cd_A +-_o _cdC = IV+ IV (33)

D
The rate of inelastic work must also be split into a part W,

s
which is dissipated at once, and into another part W, which
represents changes in the internal state. Thus,

I 1 P S D
f,V=_c dc = W+ W (34)

P0
D

Only W enters the entropy production

D
r_¢=O+ fV (35)

The second taw of thermodynamics requires

D
IV> 0 (36)
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We use as thermodynamic state variables the eiastic strain,

E
represented byf_, the absolute temperature T, and a number

.4 A
of other internal state variables (k ..... ac ..... Ac_ .... ) that

E

may be scalars and tensors of even order. The choice of f_-
and Tas state variables is based on the fact that in pure tber-
moelastic deformations, both quantities form a suitable set
of thermodynamic state variables. The plastic strain and the
total strain are unsuitable as state variables because, in

general, they do not uniquely define the state of the
material. A conflicting point of view has been expressed in
Refs. 42-44. The remaining state variables are added for the
sake of the description of the changes of the internal struc-
ture of the material.

The specific free energy (Helmholtz function) _ given by

4_=u-Ts (37)

must be a unique function of the thermodynamic state
variables

e
_ 4 .4 .4B

¢-¢(f_,r,k, ac ..... AcD .... ) (38)

Since the elastic part of the deformation, according to our
assumptions, does not depend on the plastic deformation, we

may divide the free energy into two different components, as

EE S

e=o(f_, T) + e( T, .4 Ask ..... a c ..... Aco .... ) (39)

E

where the first component ¢ refers to the elastic deformation
S

and the second 4_ to the changes of the internal state.

From Eqs. (31), (33-35), and (37) we derive

E S
<k= -s_"+ IV+ I;V (40)

Also, we obtain from Eq. (39)

E E E S

...¢ v a(¢+c_) .p
;b= T_c f _ _ or

S S S

+ o,_k:+. O,ol, ""+O--;T_'c+""+_ _'t¢+''" (41)

By comparison of Eqs. (40) and (41), we may conclude that

deformation. Thus, we assume, in general

D I
• _B C D

W= Ccor_da >0

where

(43)

E

C._S- ,-,_sCft_' . _ ,_sco - ,-.co T,k ..... O: c ..... ACD ) (44)

Equations (42) and (43) are the governing equations for
nonisothermal, elastic-inelastic elementary processes. The

specific free energy _, which determines the nondissipated

work of the thermomechanical process and the quantity C_-g;
which governs the entropy production, must be specified ac-
cording to the material behavior.

Eiastic-Viscoplastic Model

Thermomechanical processes in elastic-viscoplastic bodies
cannot be considered as a sequence of equilibrium states,

even in the case of the elementary processes considered here.
Elastic-viscoplastic deformations are associated with non-

equilibrium states. One consequence of this fact is that we

may get a continuation of a process without any change in
the independent process variables. This occurs, for example,
in the case of creep with constant stress and temperature or
in the case of an adiabatic stress relaxation under constant

strain. In such cases, the body moves from a nonequilibrium
state to an equilibrium state.

In order to establish the constitutive relations for elastic-

viscoplastic bodies, which in the limiting case becoming
elastic-inviscidly plastic, we adopt the usual assumption that
the stresses, which produce the inelastic deformation, may be
expressed as the sum of the so-called athermal or inviscid

stresses, _ and the viscous overstresses _c

d=_c=_+ (_-_) (45)

This assumption by no means detracts from the "unified"

concept. The rate-independent limit of viscoplastic con-
stitutive relation was recently discussed by Travnicek and
Kratochvil? s Hence, the total work rate can be partitioned
in the following way:

E P V i E i P 1. P
#= w+ rv+ W= _cd c +--_cd c +--#d_C

Po Po .Oo

(
W

(46)

E S
a(¢+<_)

S=
aT

S S S

s a, . a_,_ o, T.,
W=-T_-k +... _ +...+ O(x_°tc + OA_)A_'D...

E

q. a¢,
=_,oJc--V

ay;

(42)

For irreversible processes, this scheme of description has
to be completed by some statements about the dependence of
entropy production on the thermomechanical process. Under

our assumption, we need deal only with entropy production
by dissipated mechanical work, in connection with inelastic

The viscous part of the work is completely dissipated. Thus,

we may write

V D.,
fV= W (47)

Regarding the plastic work, we have already stated that one
part is used for changing the internal state and only the re-
maining part can be considered to be dissipated. Therefore,
we must write

P S
#= ff'+_' (48)

So, we finally obtain

E sfv= w+ W+_¢+_

t?.
W

(49)



i

120 RIFF, CARLSON, AND SIMITSES AIAA JOURNAL

We have assumed that the changes of the internal state of

the material can be regarded as a sequence of equilibrium

states. Then, the specific energy is well defined in each state

of the process and we may take the usual overall statement
concerning the specific free energy. In so doing, however, we

S
must be aware of the fact that into the part W of the plastic

P
work rate W only the athermal stress _c enter, since only
these stresses are involved in the plastic mechanism. For the
same reason, we can introduce only the athermal stresses _c

D,
into the statement concerning the dissipated plastic work W.
On the other hand, we have to add the dissipated viscous

work I_," to in order to obtain the total rate of dissipation.
The different mechanisms for determining the total dissipation

and their coupling have been discussed by Perzyna. '_

We now consider an example in which the specific free

energy has the following form:

EE S EE
_=_(f_, 7")+,(7, k, _) =_'_, T)+k+:(_ +k_ c

(5O)

In this equation, h denotes a constant with the dimension of
a specific energy like the variable k and the function f(7").

Furthermore, we assume that the dissipation is given by

D., I P

#o

Dv 1 P
:¢=_(:c- _-D_ (51)

Po

where /_< 1 and c denotes constant numbers. This leads to

W f4qD=D-+D_' P P I
re= (_- 1)fV-_cho_d c + fV (52)

Hence, we obtain

s l D p
#= w- w= (1 -_) fV+_ch_ (53)

On the other hand, from Eqs. (42) and (50) we have

s. v
W = ic + 2ha_c_ c (54)

Equations (53) and (54) are compatible, for instance, if we

put
P

£= (1 -_) if" (55)

and

V P

ac = v2c_ (56)

P

From Eq. (55) it follows that, in our case, the plastic work B,
is equivalent to the thermodynamic state variable k. This is

still true if we take _ as a function of k. But it does not hold
in the general case when _ also depends on the other state
variables T and c_. Equation (56) shows that only in a very

special case, a very unrealistic one, the state variable a_ is
equivalent to the plastic deformation.

From the thermodynamical considerations, it follows then

that we may introduce the quantities k and a_, defined by
P

Eqs. (55) and (56) or any other equivalent set (W, cpohc_),

as internal variables into the corresponding constitutive

equations of the process description.
The constitutive equations themselves are not yet deter-

mined completely by Eqs. (50), (51), (55), and (56). These

given only the restrictive frame for the formulation of these
equations. We may derive a complete set of constitutive
equations, which is compatible with this frame, by the fur-

ther assumptions:
I) The introduction of a yield condition of the form,

P

F= (['_-cPohoe_-)(f_-C,ooho_)-g2(W,T) =0 (57)

where t'_ denotes the deviator of the Kirchhoff stresses _c.

2) The plastic deformation obeys the so-called normality
rule,

P _dF
a_= _ (ss)

3) The relations between the viscous stresses and the in-
elastic deformation rate are of the form,

P I;A 1

a_ - .-_t c = _ ( t_ - t_ ) (59)

4) The quantities _ and c are constant.
We can eliminate the athermal stresses _c (which are not

state variables) from the equations of evolution by consider-

ing that the inelastic deformation can be expressed in two
different ways. In one, the plastic mechanism is considered

and the viscous mechanism in the second. From Eq. (57), we
then obtain

P
d_= 2_(t'_-C_oh,_) (6o)

while from Eq. (59), we have

P i rt x f_
d_="_,c- c,

1

=-_-1 t_ -cpoh_x _ - ( t_ -caoho_ ) I

P

By comparing these equations for d_, we get

(61)

_ = --_ I ( . ( t_ - cp°he_ ) ( t_ 11g_ - e# oha_ ) '_ _ (627

Following the course of the process in each state, the internal
P P

parameters t;V and _c and, therefgre, also k 2 = k2(W, a_) are
known. Thus, we may calculate X from Eq. (62) and then all

P
the other needed quantities such as _ and d_.

Discussion

Many thermodynamic considerations of nonisothermal,
elastie-viscoplastic deformations refer essentially to the
general fundamentals that must be observed in describing

such phenomena as thermomechanical processes and then
discuss what particular restrictions follow from the second
law of thermodynamics. Only a few papers attempt to

describe completely such processes by state equations. Most
of these papers introduce plastic strains as thermodynamic
state variables. But one may conclude from the consideration

of the phenomena in the crystal lattice (dislocations, for ex-
ample, that have completely passed through the crystal pro-
duce plastic strains but no changes of state) as well as from

phenomenological observations (different states of hardening
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can belong to the same plastic strains) that plastic strains in

general cannot be regarded as state variables. Furthermore,
all these papers consider the plastic work as completely

dissipated. However, this is in contradiction with experimen-
tal results, from which it emerges that one part of plastic

work is used for producing states of residual stresses in the

lattice, which, v, hen phenomenologically considered, cause

hardening.

The results in work presented here can be extended to

more complex constitutive equations by introducing more in-

ternal parameters or state variables. We may extend our ap-

proach to more general, anisotropic hardening materials by

assuming [see Eq. (50)], for example, that

EE S

¢=O(f_-,T)+O( . .4 a87",k,tac,Aco)

EE
zlAB_C_D= 0 Oct, T) + k +f(T) + ,_ co_, 4 '-'a (63)

Also, it may be more advantageous to replace the assump-

tion in Eq. (58) for the plastic deformation rate by

. 0F Aa_ (64)

This form of this model appears to be more suitable for

representing some experimental results in which second-order
effects and some deviations from the normality rule have

been observed. Sometimes, the normality rule is considered

as a fundamental law based on an entropy production princi-

ple. But we should keep in mind that, since not all of the

plastic work is dissipated, we cannot expect the total plastic

deformation rate to obey the theory of plastic potential even

though the mentioned principles of entropy production are

correct.
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The problem of buckling of shallow arches under transient thermomechanical loads is investigated. The

analysis is based on nonlinear geometric and constituti2e relations and is expressed in a rate form. The material

con._tiluti_e equations are capable of reproducing all nonisothermal, elasloviscoplastic characteristics. The
solution scheme is capable of predicting response that includes pro- and postbuckling with creep and plastic
effects. The solution procedure is demonstrated through several examples that include both creep and snap-

through behavior. "

w

w

Introduction

LASTIC snap-through of low arches under quasistatic
loads has been the subjec: of several investigations. The

significance of the problem, insofar as it illustrates certain

important features in more complicated buckling problems of

plastes and shells, was pointed out by Marguerre, 1 who con-

structed a simpiified mechanicaI model to demonstrate these
features. Timoshenko: obtained an approximate solution to

the problem of a lob' arch under a uniformly distributed load.
Biezeno s considered the problem of a low-parabolic arch

loaded laterally' at the midpoint with a concentrated load. He

also investigated snap-through buckling of a shallow spherical

cap, pinned along its circular boundary, under the action of a
concentrated load applied along the axis of rotational symme-

try. He presented his approximate solutions by means of road-
deflection curves and equations from which the critical load

could be calculated..
In 1952, Fung and Kaplan 4 investigated the problem of low-

pinned arches of various initial shapes and spatial distributions
of the lateral load. Their results show that a verb, shallow arch

snap through symmetrically, whereas a higher arch buckles
asymmetrically. The'," also ran a limited number of experimen-

tal tests, and their experimental data are in good agreement
with their theoretical results. About the same time, Hoff and

Bruce:, in investigating the possibility of snap-through buck-

ling of a low-pinned arch with a half-sine-wave initial shape
uneer a half-sine-wave distributed dynamic load (suddenly ap-

Flied with infini:e duration), obtained results for the qua-
sistatic load case that are identical to those obtained by Fung

and Kaplan for the same problem.
In 1962, Gjelsvik and Bodner _ obtained an approximate

solution to the problem of a low-circular arch with a concen-
trated load at the midpoint of the arch and clamped boundary

conditions. They also reported on experimental results.

Schreyer and Masur: obtained an exact solution to their prob-

lem (and for the load case uniform pressure), and they showed

that for the concentrated load case, the arch snaps through

symmetrically regardless of the value of the rise parameter.

Masur and Lo s presented a general discussion of the behavior

of the shallow circular arch regarding buckling, postbuckling,

p
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and imperfection sensitivity. Snapping of low-pinned arches

resting on an elastic foundation has been investigated by' Sim-

itses2 This system exhibi:s all forms of experimentally' ob-

served buckling phenomena (smooth and violent) and of theo-

retically predicted responses (limit point, bifurcation with
stable branching, and bifurcation with uns:able branching),

and it is presented with sufficient detail in Ref. 10. Experimen-

tal results have also been reported by Roorda. _

The effects of inelastic material behavior found their way

into the literature since the 1960's. Onat and Shu;: considered

the behavior to be one of rigid-perfectly plastic. Fromciosi,

Augusti, and Sparacio _) discussed the collapse of arches under

repeated loads with inelastic material behavior. Studies of in-

elastic snap-through buckling of shallow arches also were re-

ported by Lee and Murphy2' In addition, Augustil:investi -

gated plastic buckling of a model of a three-hinged arch in

1968, and a more complete analysis of the same model was

provided by Batterman _e in 1971. Finally', the reader who is

interested in the ultimate strength of parabolic steel arches

with bracing system is referred to Komatsu, :r who considers

inelastic in-plane and out-of-plane instabilities and provides

design formula for each case.

Creep buckling of shallow arches has been investigated by
FIuang and Nachbar, n Krajcinovic, _9 and Botros and Bi-

enek." The elasnc response of arches under sudden (dynamic)

application of the external loads has been reported by Hoff
and Bruce, _Hsu, :t'= and Lock. n For a more complete bibliog-

raphy see Ref. 2.1. As far as the authors know, no work has

been reported on the nonisothermal elastoviscoplastic behav-

ior of shallow arches. The purpose of this paper is to demon-

strate the effect of highly nonlinear material behavior on the

snap through and creep buckling of shallow arches.

Elastothermoviscoplastic Constitutive Relations

The prediction of buckling loads and postbuckling behavior of

structural components, like shallow arches, made of a realistic
metallic material and subjected to nonisothermal thermome-

chanical loads has increased in importance in recent years.

Under this kind of severe loading conditions, the structural

behavior is highly nonlinear due to the combined action of

geometrical and material nonlinearities. On one side, fini:e

deformation in a stressed structure introduces nonlinear geo-
me:rio effects On the other side, physical nonlinearities arise

even in small strain regimes, whereby inelastic phencmer, a

play a particular!y important role. From a tk, eoretical s:and-

point, nonlinear constitutive ecuations, shoul_ _.,.oapp!ie_ only.
in con:co(ion _i:h non[inca r trar..'.forma_ior rr.'.-a,::r_'. (.mr".
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ins both deformation and rotanonsL However, in almost all of

)the works in this area. :s the two id_nti_ed sources of nonlin-
_earities are always separated. The +eparation yie!ds, at one end

'of _he spectrum, problems of _ar_e :espouse, whereas at the

other end problems of viscous and, or non[sothermal behavior

in the presence of small strain.

The classical theories in which :he material response is char-
ac:erized as a combination of distinct aiastic, thermal, time-in-

dependent inelastic (plastic) and rime-dependent inelastic

(creep) deformation components :armor explain some phe-

nomena that can be observed in complex thermomechaaical

loading histories. This is particular!y true when high-tempera-

ture nonisothermal processes must be taken into account.

There is a sizeable body of literatur_ -s on phenomenological

constitutive equations for the rate and temperature-dependent

plasti,: deformation behavior of metallic materials. However,
almost all of these new "unified" theories are based on small

strain theories, and several suffer from some thermodynamic
inconsistencies.

In a previous paper, :v the authors have presented a complete

set of constitutive relations for no.',,isothermal, large strain,
elastoviscoplastic behavior of metals. It was shown there :7 that

the metric tensor in the convected [ma_eriaD coordinate system

can be linearly decomposed into e!astic and frisco) plastic

parts. So a yield Function was assumed, which is dependent on

the rate of change of stress on the metric, on the temperature,
and on a set of internal variabies. Moreover, a hypoetasd¢

law was chosen to describe the :hermoe!astic part of the
deformation.

A time- and te,';nperature-depe.':dent viscop[asticity mode[

" was formulated in th_s converted .'r.,aterial system to account

for finite strains and rotauons. T_e history and temperature

der.endence were incorporated through the introduction of
internal variables. The choice of :kese variables and their evo-

lution were motivated by thermod}namic considerations.

.The nonisothermat elasto,,iscopIastic deformation process

was described completely by "thermodynamic state" equa-

tions. Most investigators :-_.:6 (in the area of viscoplasticity)

employ plastic st:ains as state var_abies. The authors' previous

study-'_shows that,in general, use of plasdc strainsas state

variables may lead :o inconsistencies with regard :o thermody-

namic considerations. Furthermcre, :he approach and formu-

la(ion employed in previous works :end :o :he condition that

ai[ of the plastic work is completely dissipated. This, however,

is in contradiction vHth ex;erime=:zl evidence, from which it

emerges that part of _he plastic work is used for producing

residual stresses in the lattice that, when phenomenologicaily

considered, causes harden!rig. Beth [imiations were excIuded
from this:: formulation. Accuracy of the formulation was

checked on a wide range of exam._ies. :s
The constitutive :eiat/on wdI t'e rephrased here in some

d, if.%rent form. For bre;'iry ",'e c_mpi!e only some notations

and Fundamental relations that are "sod in the formulation of,
the intended consticative la'.v. For details see ReFs. 27 and 2S.

Concerning :he formula',ion of ce'_stituti_e taws, it is advan-

tageous to use a material (convec:e_) coordinate system. The
transformation from the underfor.-aed state (metric _._) to the

deformed state g,_ can be represented by the tensor

f, = g" g,, .. (la)

or

(f" ')}¢= g'" _,, fib)

The total deformation rate is defined by

d_ I/:¢,,g,,, = _ V:g,,g,_ )._ " -l , " " =.... :V ),_, -'/:C-')!,f'_(2)

and u,.k are the material velocities gradients. Hence,

d, = V'.(u,.j, ÷ u_.,) (4)

The expression

J'_ = (j')!, - d_. - d(,f_ = sym[(j')!,] (5)

represents the symmetric part of (.,_'_ or the covariant deriva-

tive with respect to time, a[so calIed the convec:ed derivation,
which is due to Zaremba and /aumann.

The total deformation can be decomposed according to

U) (t)
• • f •

f'_ = g'mg_,, gs,_ = f ,f _ (61

where the superscript (') relates to a fictitious configuration
defined by a fictitious reversible process with frozen internal

variables. The decomposition of Eq. (6) Ieads to an additive

decomposition of -he deformation rate

(r) tO

d_= d_ + d_ (7)

(e) 0")

d'_ is related to the reversible deformations, whereas d_ de-

notes the remaining part of the deformation rate.

For the description of the stress state, we introduce the
Kirchoff stress tensor s,_, which is connected with the real

Cauchy stress tensor 7_: by the relation

s_.= (.b/o)¢_ (8)

Assuming that the elastic behavior is not affected essentially
by inelastic deformations, the following hypoelastic incremen-
tal law was chosen:=:

d_ =_ ti+ +a 8i (9)

where t_ £s the weighted stress deviator, G the shear modulus,

K the bulk modulus, and c_ the coeffic!ent of thermal expan-
sion.

The following constitutive re!ations were established -'_ for
the inelastic behavior. Y/e!d condition:

F = ( t_ - " ' t'cpg+3_)(_ - c_g3",) - k:(A, 73 =fz _ kz>0 (10)

Accompanying equilibrium state:

" "" t = .I'" -- k-"P = (t'_ - c_gJ_.)(?, e - c,.-)g.,3,) - k:(,4, 2") = 0 (I l)

Evolution law for ineIastic deformations:.

if)

d, = ,X(t_ - cpg:30

I, [(:; - e;g3',)W - c;oe_') z)

¢pg/J_-)-t_. = i +14r/h(tg - + c_g3_-

with

Evolution laws for the internal variables:

(12)

,a )-' 7'
: T t',t (_ ¢

(13)

Here (') denotes time material derivative. The rate of change ORIOINAL PAGE ISof the metric tensor is given by

OF POOR QUALITY
I &, = u,.__-u+, (3)

(14)

(1_)

(16)
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d_. = 0 and d[ = 2_(t_ - cpg_,)"=_
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(18)

09)

(20)
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F<O

(r)

A=0

V

_J,= 0

(22)

(23a)

(23b)

(23c)

Within the developed frame, the elastoviscoplastic behavior

is governed by the scalar material functions c(si_,T,A, ff,),

k:(A,7"), g(s_,,R, ff_), UA,R,_D, and _(A,T,_i,). These ma-
terial functions can be determined from a series of monotonic

and cyclic processes with proportional and nonproportional

paths at different temperature levels} s

General Formulation and Solution Schemes

The rate form of the constitutive equations suggests that a

rate approach be taken toward the entire problem so that flow

is viewed as history-dependem process rather than an event.

For this purpose, a complete true ab-ini:io rate theoD" of kine-
matics and kinetics for continuum and curved thin structures,

without any restriction on the magnitude of the transforma-

tion, was presented in Ref. 28. It is implemented with respect

to a body-fixed system of convected coordinates, and it is valid

for finite strains and finite rotations. The time dependence and

large strain behavior are incorporated through the introduc-

tion of the time rates of change of the metric and of the
curvature.

The constitutive law may be applied to the conservation of
momentum via an appropriate variational principle. The prin-

ciple of virtual power (or of virtual velocities) reads

where &,j are the virtual velocities, fY the body forces per unit
mass, and _TJ the surface tractions. Tot-,d differentiation of

Eq. (24) yields

[ d/J,[ d:, ee <,d,- I 7o d,"
Jr\ d_ "

+ | eq-z-_."l,idV-/ p/.---r--dT,
jA ,_, ; jv \at� 2v at

t' d&',
- ,r.'w = 0 (25)

J_ dt dA

At an5" instant Eq. (251 must be satisfied. The virtual veloc-

ity and its time derivative are then independent. Moreover, the

last three terms of Eq. (25) are equivalent to Eq. (24). Hence,

the principle of the rme of virtual power may be obtained in its
concise form. For further classifiations, the total derivative of

the stress components will be represented by the Jauman

derivative, and the following integrals are defined by

re:'ou,,,/e = ", d V (26)

[ (d;d_ - ak_d",)&,_., dV (27)la = v

L = t _ ";eak;&'s ' d I" (28)

Then. substitution in Eqs. (23") yields the final form of the

principle of the rate of viEual power:

l=I,+Ic_L= D &., dV + _ &.,dA (29)
A

The quasilinear nature of :he principle of the rate of virtual

power suggests the adoption of an incrementaI approach to

numerical integration _ith respect to time. The avaitabi!iLv of

the field formulation provides assurance of the completeness

of the incremental equations and allows the use of any conve-
nient procedure for spafia! integration over the domain V. In

the present instance, the choice has been made in favor of a

simple first-order expansion in time for the construction of

incremental solutions from the results of finite-element spatial
integration of the governing equations.

The procedure employed permits the rates of the field for-
mulation to be interpreted as increments in the numerical solu-

tion. This is particularly convenient for the construction of

incremental boundary condition histories.

The finite-element me:hod for spatial discredzation has

been well documented tsee, e.g., the books b v Zienkiewicz :9 or-

Oden 3°) and will not be de:aJied here. The algebraic counter-

par:, of Eq. (29) After the finite-element discretization (for
derail see Ref. 2S) is the well-known stiffness expression

[K]{ Vl = lP} - [Fl (30)

with the tangent stiffness matrix [K], the vector of the incre-

mental velocities {l'], and the vector out-of-baiance force

rates, external force rates { P } minus interna! force rates l F 1.
The homogenous case of Eq. (30) indicates either the non-

uniqueness of the equilibrium path at a s:abie or unstabie

bifurcation 7oin: or the unique bu: unstable situation at a limit

point. Hence, this criterion may be evaluated by a determinant

check or supplementary eigenvalue analysis for the load

parameter parallel to the loading process.

Even under the condition of static external loads and slowly
growing creep effects, the presence of snap-through buckling

makes the inertia effects significant. In dynamic analyses, the

applied body forces include inertia forces. Assuming that the

mass of the body considered is preserved, the mass matrix can

be evaluated prior to the time integration using the initial

configuration.
Finite-elemem solution of any boundary-value problem in-

vobss the solution of the equilibrium equation (global) to-

gether with the constitutive equauon (local). Both equations

are solved simul,'aneously in a step by step manner. The incre-

mental form of the global and local equations can beachie_ed

by taking the imegratien over the incremental time step

At = tj., -- t,. The rectangular rule has been applied to exec.',te
the resulting time integration.

Clearly, the numerical soi'.':ion involves iteration. A simpli-
fied versio:" ofRiks V.emT:_er conr:zxt-arch-!.-'RL;:h me:Eo2
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has been used. This iteration procedure, which is a generaliza-
tion of :he displacement control method, also allows to trace
the nonlinear response beyond bifurcation points. In contrast
to the conventional Newton-Raphson techniques, the iteration
of the method takes ;lace in the velocity and load rate space.
The load step of the first solution in each increment is limited
by controlling the length as of the tangent. Either the length is
kept constant in each step, or it is adapted to the characteristics
of the solution. In each step the triangular-sized stiffness ma-
trix has to be checked for negative diagonal terms, indicating
that a critical point is reached.

... Shallow Circular Clamped Arch

The theory and computational procedures described [n the
proceeding sections have been applied to the creep buckling
analysis of a shallow circular c_amped arch. The problem of
the clamped arch, besides being of some pr_-c:icat interest,
contains a number of similarities to that of the uniformly
loaded spherical cap. The trend of results of the arch problem
serves as a good indicator to the behavior of the latter.

The shallow circular clamped arch subjected to a single cen-
tral concentrated load, as shown in Fig. i, is analyzed. The
material chosen for the numerical experimentation is the car-
bon steel C-45 (DIN 1720) with E = 10' psi, _,= 0..t, and
(7, = 2.7 × 10"*psi at room temperature. The viscop[astic prop-
enies (the scalar material functions) were obtained in Ref. 28.

The analysis is performed with the aid of 24 paralinear
isoparametric elements (,Fig. 2). The paraiinear isoparametric
element is intended for the analysis of oriented structures
where the geometry is such that the thickness is small com-
pared to other dimensions. The characteristics of the element
are defined by the geometry and interpolation functions,
which are linear in the thickness direction and parabolic in the
longitudinal direction (see Fig. 2). Consequently, the element
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allows for shear strain energy, since normals to a midsurface
before deformation remain straight but not necessarily nor-
mal to the midsurface after deformation.

The elastic behavior, corresponding to both a.xisymmetric
and asymmetric response, Is shown on Fig. 3. These curves are
in comple',e agreement with those produced by Gjelsvik and
Bodner, _ only because the Young's modulus and Poisson's
ratio values used are virtually the same (carbon steel C-45 here
and 2024-T4 aluminum alloy in Ref. 6). Note that these .'!astic
response curves are hypothetical for our material but true for
the 2024-T4 ahoy. The true behavior for our material is elasto-
viscoplastic, and it is labeled as such on Fig. 3. Note that this
curve represents quasistatic (steady-state) e!astoviscoplastic re-
sponse, as described by the chosen constitutive taw. According
to this, snapping occurs at a load of 26.20 Ib, primarily be-
cause of the low-yield strength. Then, the postlimit point be-
havior seems to be primarily driven by viscoplastic behavior.

It is expected here that if loads up to approximately 14Ib are
reached quasistatically and left appliedfor a long rime, the
primary response will be creep, and the critical creep collapse
time will be extremely large. On the other hand, for loads
between 14 and 26.2 lb (especially for the higher range), the
behavior will be a combination of creep and snap-through
buckling. This is best demonstrated by the curve on Fig. ,l. The
applied load is reached quasistatically in 13 rain, and then it is
kept constant. The curve of Fig..l depicts the behavior of the
arch in terms of midpoint deflection vs time. Creep, initially,
is very slow; then snap-through takes place in 32 rain, curve
BC, and then the creep behavior continues until a critical time
to creep (creep buckting occurs) is reached after a total time 97
rain. Note that for this loading condition, the critical time to
creep in 97 rain. Creep buckling and critical time to creep are
based on the phenomenon that the deflection increased very
rapidly. For loads higher than 26.2 lb. it is expected that snap-
ping will occur early during quasistatic loading, and then the
creep behavior will be similar to that shown on Fig. 4, past
point c.
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The nex-t example considers the influence of cyclic loading
on the response. Figure 5 illustrates the load deflection behav.

for of the arch under a cyclically applied external load. The

load is increased, quasistatieaIIv, Cram zero to 26 Ib in 5 rain,
then it is held constant for 2.5 rain. after that it is reduced to

20 Ibs and held constant for 50 rain, theft raised to 25.5 Ib for

2.5 rain, and finally it is reduced back to 20 lb held constam.

The steady-state response under this type of loading exhibits

several relative maxima points, which may imply that snapping
is imminent shortly after the load reaches the value of 26 ]b

(between points A and B on Fig. 5). The dashed curve corre-

sponds to the hypothetical e!astic static response, and it is only
shown for comparison purposes.

The last example presented in Fig. 6 considers the influence

of temperature on the arch behavior. The loading history is the

same on the one sho_n on Fig. _. The curve corresponding to
T = ¢0"F was discussed previously iFig. 4), and it is used here

as a basis for comparison. When the _emperature is raised to

200*F (after this, the loading is applied), the time to snap is

reduced to 26 rain, whereas the critical creep collapse time is

not appreciably affected. On the other hand, at the highest
temperature T = 1000"F for which resuhs are shown. The crit-

ical creep collapse time is reduced to 6.2. rain, and the steady-
stare response does not show a clear snap-through behavior.

Different values of cc were used for the different temperature

in the elastic range.

Discussion

As noted earlier, the main thrust of this work has been to

demonstrate the effect of highly nonlinear material behavior

on the snap-through and creep buckling of shallow arches. It

is evident that in the presence of both elastic and viscoplastic

deformation the process of buckling assumes an entirely new

character. Buckling develops as a time-temperature-dependent

deformation process under constant or var:able loads of mag-
nitudes smaller than the elastic critical values. In arches under

loads belay, the critical values the structure initially deforms

quasistatically, v, ith the thermoviscous terms manifesting

themselves in the form of increasing displacement unJer, say,

a constant load. When the magnitude of the d!splacements

reaches a certain threshold state, the arch snaps dynamically

into the postbuckling configuration and then continues qua-
sistatic deformation again.

The material constitutive relation has been _'ro;en to be

capable of reproducing the main characteristics of viscoptas_ic
deformations. The modified Riks/Wempner iteration scheme

has been found to be a versatile technique in the pre- and

postcritical range.

The influence of thermomezhanical coupling can become

re.'2,.' large in stability problems. Such processes are always

connected v, ith a rapid growth of inhomogenehy of the state.

Thorough investigation of such problems, ho_vever, must be

performed with the necessary de,all. ..
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NON-ISOTHERMAL BUCKLING BEHAAqOR OF AFISCOPLASTIC SHELL

STRUCTURES

Richard Rift

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta,Geor_a 30332

Abstract

The bucklingbehavior ofthinmetallicshellstructuresunder transientthermomechani-

calloads isinvestigated.The analysisisbased on nonlineargeometricand constitutive

relations,and allthe fieldequationsareexpressedin a rateform. The employed consti-

tutiveequationsare thermodynamically consistentand they arecapableofcapturingall

non-isothermal,elasto-viscoplasticcharacteristicsofthe response.The solutionscheme

iscapable ofpredictingresponsewhich includespre- and post-bucklingwith creep and

plasticeffects.The solutionprocedure isdemonstrated through severalexamples which

includeboth creep and snap-through behavior.

Introduction

The predictionofinelasticbehaviorofmetallicmaterialsatelevatedtemperatures has increased

in importance in recentyears.The operatingconditionswithin the hot sectionof a rocketmotor

or a modern gas turbineenginepresentan extremelyharsh thermomechanical environment. Large

thermal transientsare induced each time the engineisstartedor shut down. Additional thermal

transientfrom an elevatedambient, occur whenever the engine power levelisadjusted to meet

flightrequirements. The structuralelements employed to constructsuch hot sections,as wellas

any enginecomponents locatedtherein,must be capable ofwithstandingsuch extreme conditions.

Failureof a component would, due to the criticalnature ofthe hot section,lead to and immediate

and catastrophiclossin power and thus cannot be tolerated.Consequently,assuringsatisfactory

long term perfor-mance forsuch components isa major concern forthe designer.

The problem of inelastic analysis of shell structures has been investigated recently by Kojic'

and Bathe 1. They used the "effective-stress-function" algorithm to compute plastic and creep

effects on the behavior of shell like structures. The effects of inelastic material behavior on stability

of shells found their way into the literature since the late 1970's. The paper by Miyazaki and

Ando 2 deals with creep buckling of perfect spherical shells subjected to pressure loading and

considers only the effects of steady-state creep. Xirochakis and Jones 3 have studied axisymmetric

and bifurcation creep buckling of externally pressurized spherical shells under the condition of

secondary creep only. Botros and Bienek 4 presented a numerical treatment of the creep buckling

of these configurations. Their work includes the effects of elastic strain, primary and secondary

creep strains and creep recovery. The influence of temperature and viscous effects on dynamic

buckling of shells has been considered by Wojewodzki and Bukowski s,6. The book by Owen and

Hinton z gives a list of references for the applications of finite element methods to the problem of

creep buckling of structures.

Assistant Professor,Member AIAA
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As far as the author know no work has been reported on the non-isothermaI buckling behavior of

elasto-viscoplastic shell structures.The purpose of this paper is to demonstrate the effect of highly

nonlinear material behavior on the snap through and creep buckling of shells.

:Elasto-Thermo-Vlscoplastic Constitutive :Relations

In a previous works s-11, following the ideas of Lechmann t2,1s the authors have presented a

complete set of constitutive relations for nonisothermal, large strain, elasto-viscoplastic behavior of

metals. It was shown there s that the metric tensor in the convected (material) coordinate system

can be linearly decomposed into elastic and (visco) plastic parts. So a yield function was assumed,

which is dependent on the rate of change of stress on the metric, on the temperature and on a set

of internal variables. Moreover, a hypoelastic law was chosen to des.cribe the thermo-elastic part
of the deformation.

A time and temperature dependent viscoplasticity model was formulated in this convected

material system to account for finite strains and rotations. The history and temperature dependence

were incorporated through the introduction of internal variables. The choice of these variables, as

well as their evolution, was motivated by thermodynamic considerations.

The constitutive relation will be rephrased here in some different form. For brevity we compile

only some notations and fundamental relations which are used in the formulation of the intended

constitutive law. For details, see Refs. 8 and 11.

Concerning the formulation of constitutive laws it is advantageous to use a material (convected)

coordinate system. The transformation from the underformed state (metric _k) to the deformed

state (gik) can be represented by the tensor:

O

g., '" (i)

The total deformation rate is defined by

1 (r- 1 .rk 1 I ( • , 1.. r_" r
'_ = _g grk = --Sg_rg = _(.:- )r(/)J,= --'_(.:-).r.q (2)

The expression
V

(1)!,,+ - = (5)

represents the symmetric part of (])!k or the covariant derivative with respect to time, also called

the convected derivation, which is due to Zaremba and Jaumann.

here (') denotes time material derivative. The rate of change of the metric tensor is given by

_k = _,k + _,_ (3)

and vi,_ are the material velocities gradients. Hence,

1
= + (4)
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The total deformation can be decomposed according to

=g .,,g,k=/.f_ (6)

where the superscript (') relates to a fictitious configuration defined by a fictitious reversible process

with frozen internal variables. The decomposition of Eq. (6) leads to an additive decomposition of
the deformation rate

(_.) C9
=_"_+ a_k (7)

(_3 C_)
d_ is related to the reversible deformations, whereas _ denotes the remaining part of the deforma-
tion rate.

For the description of the stress state, we introduce the Kirchoff stress tensor s}_, which is
connected with the real Cauchy stress tensor a_, by the relation:

4 = p ' (s)
yak

Assuming that the elastic behavior is-not affected essentially by inelastic deformations, the

following hypoelastic incremental law was chosen s

(r) 1 v 1 -r
(9)

with

t}_ :
G :

K :

Ot :

weighted stress deviator
shear modulus

bulk modulus

coefficient of thermal expansion

The following constitutive relations were established s for the inelastic behavior.

yield condition:

F= Ct_- c_gflD(¢- __ gfl,_)- k'(A,T) =/_ - k_> 0

accompanying equilibrium state:

(1o)

F- ('_- c_ogfl(k)(_- c _ogfl_)- k2(A,T) = 72 - k7 - 0 (11)

evolution law for inelastic deformations:

(0

(12)

with

and

!
't[ _ kJk i -- ¢

:' = _( V (t'_- c :o,,:_'_:t',_, 7'g_'_)- 1)

":_"= 1 +14rI_(t_- c _ gfl_)+ c *Pgfl_

(13)

(14)
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evolution laws for the internal variables:

if

then

with

if

or

then

P

_= __

BF v. OF.

F-O and _-_s_s£+_-_T>0

{0 v

. Ok 2 ._
= I {2(4- cp g_) tv -_-T)

BF v. OF.

F = o a.d as---f_4 +-_T <_0

F<O

_{ = 0
V

p_ = o

(15)

(16)

07)

(18)

(19)

(20)

(21)

(22)

(23)

Within the developed frame the elasto-viscoplastic behavior is governed by the scalar mate-

rial functions c(s_,T,A, fl_), k2(A,T), g(s_,A,T,;9_), _(A,T, Jg_), and _7(A,T,_). These material

functions can be determined from a series of monotonic and cyclic processes with proportional and

nonproportional paths at different temperature levels 1i

Formulation and Solution Schemes

The rate form of the constitutive equations suggests that a rate approach be taken toward the

entire problem so that flow is viewed as history dependent process rather than an event. For this

purpose, a complete true ab-initio rate theory of kinematics and kinetics for continuum and curved

thin structures, without any restriction on the magnitude of the transformation was presented in

Ref. 11. It is implemented with respect to a body- fixed system of convected coordinates, and

it is valid for finite strains and finite rotations. The time dependence and large strain behavior

are incorporated through the introduction of the time rates of change of the metric and of the
curvature.
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A nonlinear, thermodynamic theory of shells was derived in ref. 11 from three dimensional
continuum mechanics in a natural and comprehensive way. All the approximations l_ad been thrown

into a postulated two dimensional form of the first law of thermodynamics.

The derived shell theory, in the least restricted form, before any simplifying assumptions are

imposed, has the following desirable features:

(a) The two-dimensional, impulse-integral form of the equations of motions and the Second Law of

Thermodynamics (Clausius- Duhem inequality) for a shell follow naturMly and exactly from

their three-dimensionM counterparts.

(b) Unique and concrete definitions of shell variables such as stress resultants and couples, rate of

deformation, spin and entropy resultants can be obtained in terms of weighted integrals of

the three*dimensional quantities through the thickness.

(c) There are no series expansions in the thickness direction.

(d) There is no need for making use of the Kirchhoff Hypotheses in the kinematics.

(e) All approximations can be postponed until the descretization process of the integral forms of

the First Law of Thermo- dynamics.

(f) A by-product of the descent from three-dimensional theory is that the two-dimensional tem-

perature field (that emerges) is not a through-the-thickness average, but a true point by point

distribution. This is contrary to what one finds in the literature concerning thermal stresses
in the shell.

The obtained complete rate field equations consist of the principles of the rate of the virtual

power and the rate of conservation of energy, of the constitutive relations, and of boundary and

initial conditions. These equations provide a sound basis for the formulation of the adopted finite

element solution procedures.

The quasi-linear nature of the principle of the rate of virtual power suggests the adoption of an

incremental approach to numerical integration with respect to time. The availability of the field

formulation provides assurance of the completeness of the incremental equations and allows the use

of any convenient procedure for spatial integration over the domain V. In the present instance, the

choice has been made in favor of a simple expansion in time for the construction of incremental

solutions from the results of finite element spatial integration of the governing equations.

The procedure employed permits the rates of the field formulation to be interpreted as incre-

ments in the numerical solution. This is particularly convenient for the construction of incremental

boundary condition histories.

To develop geometrically nonlinear, doubly curved finite shell elements the basic equations of

nonlinear shell theories have to be transferred into the finite element model. As these equations

in general are written in tensor notation, their implementation into the finite element matrix

formulation re- quires considerable effort. The nonlinear element matrices are directly derived

from the incrementally formulated nonlinear shell equations, by using a tensor-oriented procedure.

For this formulation, we use the "natural" degrees of freedom per mid-surface shell node: three
incremental velocities and the rates of rotations about the material coordinates in a mixed form.
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Finite element solution of any boundary-value problem involves the solution of the equilibrium

equations (global) together with the constitutive equations (local). Both sets of equations are solved

simultaneously in a step by step manner. The incremental form of the global and local equations

can be achieved by taking the integration over the incremental time step At -- ti+l - tj. The

rectangular rule has been applied to execute the resulting time integration.

Clearly, the numerical solution involves iteration. A simplified version of the Riks-Wempner 14

constant-arc-length method has been utilized. This iteration procedure which is a genera- lization

of the displacement control method also allows to trace the non-linear response beyond bifurcation

points. In contrast to the conventional Newton-Raphson techniques, the iteration of the method

takes place in the velocity and load rate space. The load step of the first solution in each increment

is limited by controlling the length ds of the tangent. Either the length is kept constant in each

step or it is adapted to the characteris- tics of the solution. In each step the triangular-size stiffness

matrix has to be checked for negative diagonal terms_ indicating that a critical point is reached.

Applications

w

L

Two different material representing different sensitivity to creep and high temperature were

chosen for the numerical experimitations.

The first is the carbon steel 0-45 (DIN 1720) with E = 10 r psi, u = 0.3 and _v = 2.7 x 104 psi

at room temperature. The viscoplastic propertiea (the scalar, mater, ial functions) were obtab._ed in

Ref. 11. The C-45 has low resistance to temperature and high strain rate sensitivity. The second is

Hastelloy-X a nickel-base alloy used for burner-liner parts, turbine-.exhaust weldments, afterburner

parts, and other parts requiring high resistance to temperature effects. Material propertie_ used

for Hastelloy-X were based on data from Refs. 15 and 16.

The first example is of hinged spherical cap made of C-45 carbon steel and loaded by a con-

centrated force at the appex (Fig. 1). The hypothetical elastic response is shown in Fig. 2 by the
dash line. The true behavior for our material is elasto-viscoplastic, the full curve in Fig. 2. Note

that this curve represents quasi-static (steady state) elasto-viscopIastic response, as described by

the constitutive law. According to this, snapping occurs at a load of 32.3 lbs, primarily because

of the low yield strenght. Then, the post-limit point behavior seems to be drive_, by viscoplastic
behavior.

It is expected here that for loads between 4 Ibs and 32.3 lbs (especially for the higher range)

the behavior will be a combination of creep and snap-through buckling. This is demonstrated by

Fig. 3 for different temperatures. The applied load of 25 lbs is reached quasi-statically and then it

is kept constant. Note the different creep buckling behavior and the differnt critical time to creep

for the different temperatures.

The second example considers a clamped spherical cap subjected to uniform pressure and made

from Hastelloy-X (Fig. 4). Fig. 5 describes the different load deflection curves of the center point

for different temperatures for this example. The critical creep collapse time is reduced by 45

In the next example (Fig. 7) the central deflection time history and the influence of temperature

change of a thin, imperfect, cylind- rical shell panel made of carbon steel C-45 is shown. The panel
(Fig. 6) is simply supported on all sides, and subjected to inplane ]oads along the generator. The
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applied load of 20 lbs/in is well below the linear critical (buckling) load for this geometry, which

is 42.15 lbs/in. At a temperature of 50x F the shell is in a primary creep statd for the first 28

minutes, reaching a deflection of 0.2 in. and the critical time for creep buckling (this implies that

the deflection becomes unbounded) is 35 minutes. At temperature of 500x F the shell 'maps' into

its post-buckled configuration almost immediately but the critical time for creep buckling remains

almost unchanged. The dashed line in the figure represents a non-isothermal process where the

temperature was suddenly increased from 50x F to 500x F after 0.3 hrs. As a result the shell

snaps-through to its post buckled position at 500x F with small over-shoot and reaches its critical

time of creep buckling two minutes sooner (33 rain.).

The last example is of shallow cylindrical panel made from Hastelloy-X and subjected to a

concentrated force at the center of the panel (Fig. 8). Fig. 9 shows the deflection time history of

points 1 and 2 to P = 0.6Pet which was kept constant.

Discussion

The study shows that in the presence of high temperature and viscoplasticity, the process
of shell buckling assume an entirely new character. While the stability phenomena still exist

under sufficiently large loads, buckling develops, as a time and temperature dependent deformation

process under constant or variable thermomechanical loads of magnitude smaller than the purely

elastic critical values. If the elastic behavior of a structure displays limit points and snap-through

phenomena, the deformation process of creep buckling:become even 1,ore comp!i- cated and it

usually exhibits a combination of snapping and creep responses.
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